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II 

Tsokonombwe anatha mtunda ndi kulumpha. 

— a Chichewa proverb 

A rough translation of the proverb is: 
Tsokonombwe (a grasshopper that has no wings) can travel an incredibly Ion 

distance by hopping or leaping, rather than flying. 
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ABSTRACT 

A major use of photophysical apparatus is the study of biological systems, for 

example, peptides, proteins, and DNA, that contain one or more chromophores. In recent 

years the incorporation of nonnatural fluorescent compounds into these systems has gained 

great popularity. A number of optical "tags" have been suggested as detection tools of 

structure and function; we propose the use of the tryptophan derivative, 7-azatryptophan, as 

an intrinsic probe in photophysical analyses of proteins. Not only is this chromophore 

spectroscopically distinct from tryptophan and all other natural amino acids, but we have 

demonstrated the successful incorporation of 7-azatr>'ptophan into peptide sequences, 

biological cofactors, and bacterial proteins. 

We have performed exhaustive steady-state and time-resolved studies of the 

chromophoric moiety of 7-azatryptophan, 7-azaindole. Such work is necessary to interpret 

fully data obtained in different locales within a biological system since the photophysical 

characteristics of this nonnatural amino acid are unusually sensitive to its surrounding 

environment. We also have analyzed tri- and octapeptides that mimic substrate active-site 

sequences. These peptides contain 7-azatryptophan or N|-methyl-7-azatryptophan at a 

variety of sites. We have performed binding studies and photophysical analyses of these 

peptides alone and bound to a-chymotrypsin or H-2K'' (a class I MHC molecule). In 

addition, we have tagged enzymatic cofactors with 7-azatryptophan or Ni-methyI-7-

azatryptophan and studied the behavior of these probes in a protein environment. Lastly, we 

have begun direct incorporation of this nonnatural amino acid into a variety of bacterial 

proteins, substituting a tryptophan residue with 7-azatryptophan. 

In short, we are currently developing new probes and techniques for the photophysical 

study of proteins and other biological systems, primarily by direct incorporation of nonnatural 

amino acids such as 7-azatryptophan and its analogs. 
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GENERAL INTRODUCTION 

Statement of Purpose and Overview of the Research Project 

This research entails the study of protein structure and dynamics using time-resolved 

and steady-state spectroscopic techniques. For such analyses, a chromophore is required; the 

most commonly employed is the naturally-occurring amino acid, tryptophan. There are a 

number of disadvantages in the use of tryptophan as an optical probe of biological systems. 

Two of the most glaring problems are the intrinsically nonexponential fluorescence decay of 

tryptophan in water, which complicates the interpretation of the data obtained from even a 

single chromophore, and the occurrence of multiple tryptophan residues in a protein, making 

the collection of acquired data a compilation of contributions from numerous, heterogeneous 

sites within the protein. 

Alternatives to tryptophan as spectroscopic tools in the study of biological systems are 

being developed. A variety of fluorescent compounds have gained popularity as intrinsic or 

extrinsic optical probes of biological systems. Examples of extrinsic probes include dansyl 

chloride and various fluorescein derivatives; intrinsic probes are often amino acid or nucleic 

acid derivatives, particularly tryptophan derivatives. Both extrinsic and intrinsic tags have 

advantages: extrinsic probes do not disrupt the native peptidyl or nucleic acid sequence, but 

any signal obtained from the chromophore is only an indirect measurement of local motion or 

structure (it may be argued that, at best, only probe motion is observed); intrinsic probes, on 

the other hand, may be placed in situ, allowing for direct examination of the importance and 

influence of a particular residue. This technique, however, requires consideration of the 

possibly deleterious effects caused by such a substitution. Derivatives of tryptophan such as 

7-aza, 5-fluoro, 5-methyl-, 5-hydroxy, and 5-methoxytryptophan are currently being used as 

intrinsic probes in spectroscopic studies of proteins. 

Particular characteristics of 7-azatryptophan suggest that this nonnatural amino acid is 

particularly suited for substitution of tryptophan in a biological system. Although the 

fluorescence quantum yield of 7-azatryptophan in water is low (0.03), its absorption and 

emission spectra are dramatically red-shifted from those of tryptophan, 10 and 40 nm, 

respectively; thereby permitting selective excitation and collection of emission from 7-

azatryptophan while ignoring any emission from the tryptophan(s). This is not necessarily 

true of the other tryptophan derivatives currently being studied: these compounds show 
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significant spectral (absorption and emission) overlap with tryptophan. In addition, the 

fluorescence lifetime of 7-azatryptophan in water, when measured over the whole band, is 

single-exponential (780 ps) and therefore easy to interpret, and its fluorescence spectrum is 

sensitive to the environment polarity. 7-Azatryptophan can be incorporated into peptides and 

proteins. By replacing a single tryptophyl residue, we can ensure that all emission collected 

will be from a specific site. 

To use 7-azatryptophan as an alternative to tryptophan, we must first fully 

characterize the photophysics of this optical probe. The aromatic side chain of 7-

azatryptophan, 7-azaindole, determines the photophysics of 7-azatryptophan, so it is 

necessary to understand the photophysical behavior of 7-azaindole. Tryptophan fluorescence 

decay is affected by many factors, the most important being charge transfer to the side chain. 

Such charge transfer does not occur in 7-azatryptophan since the excited state of 7-azaindole 

is significantly lower in energy than that of tryptophan. Our studies of 7-azaindole include 

synthesis of 1- and 7-methyl analogs that mimic normal 7-azaindole and its tautomeric 

species and the subsequent steady-state and time-resolved spectroscopic measurements of 

these chromophores. 

We have begun synthesis and photophysical analysis of 7-azatryptophan analogs that 

demonstrate even greater viability as optical probes in biological systems. For example, a 

new amino acid derivative synthesized in our laboratory, Ni-methyl-7-azatryptophan, has a 

number of distinct advantages. In particular, the fluorescence quantum yield of this 

derivative in water at room temperature is 0.53, it has a long, single-exponential lifetime (~ 

22 ns), and the optical spectra of this analog are significantly red-shifted from those of 

tryptophan. These characteristics allow for selective detection of this compound in the 

presence of > 75 tryptophans and short data collection times. We are currently performing 

steady-state and time-resolved experiments with N|-methyl-7-azatryptophan: study of the 

chromophore's photophysical behavior, incorporation into peptides and cofactors and 

subsequent protein-binding capabilities, and analysis of these species in a tryptophan-

containing protein environment. Other alkylated derivatives currently being synthesized as 

part of this research project aid in explaining the chromophoric photophysics and some may 

also be viable as tryptophan substitutes in biological systems. 

Incorporation of these compounds into peptides and proteins is of great interest. We 

have spent much time performing spectroscopic studies of peptides and protein cofactors that 

contain 7-azatryptophan or Ni-methyl-7-azatryptophan and have begun incorporation of 7-

azatryptophan into proteins. It is vital to note, however, that peptides containing 7-
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azatryptophan or Ni-methyl-7-azatryptophan must remain functional for these chromophores 

to be useful probes in the studies of biological systems. We have demonstrated that 

functionality is retained in our peptide and cofactor studies. Peptides containing 7-

azatryptophan inhibit a-chymotrypsin and peptides containing Npmethyl-V-azatryptophan 

bind tightly to H-2Kb, a human class I major histocompatibility complex molecule. In 

addition, the novel avidin cofactor, biotinylated 7-azatryptophan, retains a high binding 

constant with respect to avidin. We have not performed binding studies of the pyridoxal 5'-

phosphate derivative, 5'-phosphopyridoxal-D,L-7-azatryptophan, but previous work with 

derivatives that incorporate tryptophan show significant binding to tryptophanase. We expect 

similar results for the 7-azatryptophan derivative. 

Tethering 7-azatryptophan or an analog to a coenzyme that binds in the active site 

ensures that spectrophotometric examinations of the protein would indeed be of the active 

site; therefore, investigation of these small, tagged molecules in complex with a target 

protein provides a unique opportunity to study biological systems using a nonnatural probe 

while disturbing the coenzyme/protein complex insignificantly. Incorporation of 7-

azatryptophan or one of its analogs directly into a protein is our ultimate goal. Several 

mutant proteins have been generously provided to our laboratory that contain only one 

tryptophan. These are: tryptophanase, luciferase, dihydrofolate reductase, and LDH. It is 

our hope that by growing auxotrophic bacterial cells that are capable of overexpressing these 

proteins in 7-azatryptophan-containing media we may isolate proteins containing 7-

azatryptophan instead of the natural tryptophan residue. We may then pursue spectroscopic 

analyses of this nonnatural amino acid within the protein environment. 

Dissertation Organization 

This dissertation is organized as follows. Four major sections discuss analyses of the 

nonnatural amino acid, 7-azatryptophan, in different environments: Part I covers our research 

of the amino acid, its chromophore, and analogs alone in aqueous solution; Part II covers our 

research of the peptides that contain 7-azatryptophan or Ni-methyl-7-azatryptophan; Part III 

covers our research of the biological cofactors that contain 7-azatryptophan; and Part IV 

describes techniques to incorporate 7-azatryptophan into bacterial proteins. The General 

Summary is an overview of our various projects that implement nonatural amino acids as 

intrinsic biological probes. Appendices include ideas concerning future projects, preliminary 
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results for various experiments, notes on instrumentation in our laboratory, and some 

miscellaneous calculations required in my research. 

In Part I, Chapters 1 and 2 were published in J. Phys. Chem. and discuss 

photophysical characteristics of 7-azatryptophan, while Chapters 3 and 4 outline our 

syntheses and analyses of new, methylated or otherwise alkylated, 7-azatryptophan 

derivatives. Chapter 4 has been submitted to J. Am. Chem. Soc. for publication. 

In Part n. Chapter 5 is a detailed outline of the procedures I used to measure enzyme 

kinetics. Chapter 6 was published in Photochem. Photobiol. and details our initial studies of 

peptide interactions with a-chymotrypsin; Chapter 7 is a continuation of our peptide/a-

chymotrypsin studies and is undergoing revision before submittal to J. Phys. Chem.. Work 

on the peptide/MHC system discussed in Chapter 8 is currently underway. 

In Part HI, Chapter 9 was published in J. Am. Chem. Soc. and Chapter 10 was 

published in Biochem. Biophys. Res. Comm.. These chapters discuss our work concerning 

biotinylated 7-azatryptophan and 5'-phosphopyridoxal-D,L-7-azatryptophan, respectively. 

In Part IV, Chapter 11 outlines the procedures and techniques I have used in the 

incorporation of 7-azatryptophan into tryptophanase and isolation of this bacterial protein. 

This chapter also includes other pertinent information relating to our protein work. 
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PART I. ANALYSIS OF AMINO ACID RESIDUES 
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CHAPTER 1. THE FLUORESCENT SPECIES OF 7-AZAINDOLE AND 7-

AZATRYPTOPHAN IN WATER 

A paper published in the Journal of Physical Chemistry^ 

Y. Chen2, R. L. Rich2, F. Gai2, and J. W. Petrich2.3 

Abstract 

A study of the fluorescence lifetimes and quantum yields of 7-azaindole and its 

methylated derivatives N]-methyl-7-azaindole (1M7AI) and 7-methyl-7//-pyrrolo[2,3-

bjpyridine (7M7AI) in water is performed in order to explain the observation that the 

fluorescence spectrum of 7-azaindole apparently consists of one band (X.niax = 386 nm) 

whereas in alcohols the spectrum is bimodal (e.g., for methanol, A-max = 374, 505 nm). 

Careful measurements of the fluorescence decay as a function of emission wavelength 

indicate a small amplitude of an ~ 70-ps decaying component at the bluer wavelengths and a 

rising component of the same duration at the redder wavelengths. The small amplitude 

component, which comprises no more than 20% of the fluorescence decay, is attributed to 

excited-state tautomerization that is mediated by the solvent. Particular attention is paid to 

the pH dependence of the fluorescence lifetimes and yields. We propose that upon 

tautomerization the basic 1-nitrogen (Nj) of 7-azaindole is rapidly protonated, giving rise to a 

species whose emission maximum is at ~ 440 nm. The fluorescence emission maximum and 

lifetime of 7-azaindole is dominated by the 80% of the solute molecules that are blocked by 

unfavorable solvation from executing excited-state tautomerization. It is proposed that >~ 10 

ns is required for the surrounding water molecules to attain a configuration about 7-azaindole 

that is propitious for tautomerization. 

' Reprinted with permission from Journal of Physical Chemistry 1993, 97, 1770. Copyright 
© 1993 American Chemical Society. 

2 Graduate students and Associate Professor, Department of Chemistry, Iowa State 
University. Syntheses and steady-state measurements performed by R. L. Rich. 

3 To whom correspondence should be addressed. 
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Introduction 

7-Azaindole (Figure 1.1) is the chromophoric moiety of the nonnatural amino acid, 7-

azatryptophan. Recently, we have proposed 7-azatryptophan as an alternative to tryptophan 

as an optical probe of protein structure and dynamics [1-4]. 7-Azatryptophan can be 

incorporated into synthetic peptides and bacterial protein [1]. Its steady-state absorption and 

fluorescence spectra are sufficiently different from those of tryptophan that selective 

excitation and detection may be effected. The absorption maximum of 7-azatryptophan is 

red-shifted by 10 nm with respect to that of tryptophan. There is also a significant red shift of 

about 50 nm of the fluorescence maximum of 7-azatryptophan with respect to that of 

tryptophan (Figure 1.2). Most important for its use as an optical probe, however, is that the 

fluorescence decay for 7-azatryptophan over most of the pH range, when emission is 

collected over the entire band, is single exponential. For tryptophan, on the other hand, a 

nonexponential fluorescence decay is observed [5]. The potential utility of 7-azatryptophan 

as an optical probe suggests a thorough investigation of the photophysics of its chromophore, 

7-azaindole, in order to characterize its fluorescence properties and to elucidate its pathways 

of nonradiative decay. 

The photophysics of 7-azaindole were originally studied by Kasha and coworkers [6] 

in nonpolar hydrocarbon solvents where it was suggested to dimerize by forming two N|H** 

•N7 hydrogen bonds [6-9], The major nonradiative decay pathway of these dimers was 

shown to be a very rapid excited-state tautomerization producing two Ni***HN7 hydrogen 

bonds. Recently Hochstrasser and coworkers have shown that in nonpolar solvents at room 

temperature this tautomerization occurs in 1.4 ps [10]. 

There is now general agreement that in the linear alcohols an excited-state 

tautomerization can also occur, which is mediated by an idealized planar cyclic intermediate 

formed between the 7-azaindole and the -OH of the alcohol. This intermediate is believed to 

involve two hydrogen bonds; NiH***OR and N7***HOR. Once this cyclic intermediate is 

formed in the excited state, rapid tautomerization (~ 1 ps [2,11-14], as in the dimer case) can 

occur, producing different hydrogen bonds: Ni«**HOR and N7H***OR. The rate-limiting 

step for this tautomerization is the formation of the cyclic intermediate. 

In alcohols, the fluorescence emission of 7-azaindole is characterized by two bands 

with distinct and widely separated maxima as well as different fluorescence lifetimes [2,11-

14]. The redder of the two bands observed in alcohols is attributed to an excited-state 
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Figure 1.1. Structures of (a) 7-azaindole, (b) zwitterionic 7-azatryptophan, (c) N]-methyl-7-

azaindole (1M7AI), and (d) 7-methyl-7//-pyrrole [2,3-b]pyridine (7M7AI). 
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Figure 1.2. Comparison of the absorption and fluorescence spectra of (a) tryptophan and (b) 

T-azatryptophan. For tryptophan, 6280 nm ~ 5400 M"^ cm'^ [45], for T-azatryptophan, E288 

nm = 6200 M"' cm"'. Absorbance and fluorescence spectra are normalized to the same peak 

intensity. 
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tautomer. Consequently, the bluer of the two bands is attributed to a "normal" species. 

Because of the interest in using 7-azaindole as a probe of protein structure and dynamics, we 

began time-resolved studies of 7-azaindole in water [2] to complement the existing steady-

state work, carried out predominately in mixed water/alcohol solvents [11,15], An intriguing 

characteristic of the emission of 7-azaindole in water is that only a smooth band is detected 

and the fluorescence lifetime is single exponential when emission is collected over the entire 

band over most of the pH range. Previously we suggested that the fluorescent species in 

water was predominantly "tautomer-like" because the fluorescence quantum yield of this 

species is similar to that of the tautomer and the deuterium isotope effect of its fluorescence 

lifetime resembles that of the tautomer in alcohols [2]. 

Recently we have presented data [3,4] that clarify the nature of the fluorescent state of 

7-azaindole in water and broadens the understanding of this chromophore in general. By 

means of fluorescence-excitation anisotropy measurements [4,16] we have clearly resolved 

closely-lying excited states ('Lb and in 7-azaindole, just as have been observed in indole 

[17]. The presence of these states had been suggested by Bulska et al. [18]. We observed, at 

room temperature, photoionization whose origin we attribute to the upper of these two states 

as well as what we suggest is intersystem crossing. In addition, careful measurements of 7-

azaindole fluorescence performed with <~ 16 nm spectral resolution and <~ 100 ps temporal 

resolution and over many hours to ensure adequate data accumulation unveiled a small 

amount of excited-state tautomerization. 

Here we discuss further experiments to clarify the nature of the fluorescent species in 

water. Three types of experiments are considered. The fluorescence decay of 7-azaindole is 

measured as a function of emission wavelength with adequate time resolution to resolve 

various excited-states. The temperature dependence of the duration of the lifetimes of these 

excited states and the deuterium isotope effect of these lifetimes are investigated. And a 

detailed study is made of the protonated and unprotonated forms of 7-azaindole as well as of 

its methylated derivatives that mimic untautomerized and tautomerized 7-azaindole (Figure 

1.1); Ni-methyl-7-azaindole (1M7AI), and 7-methyl-7H-pyrrolo[2,3-b]pyridine (7M7AI). 

We propose here that the observations of a smooth emission band of 7-azaindole in 

water and its corresponding single-exponential fluorescence decay are consequences of the 

spectral and temporal coarseness with which the measurements are typically made. We 

conclude that the percentage of 7-azaindole molecules capable of undergoing this reaction is 

small (-20%) and that the fluorescence lifetime and spectrum is hence dominated by solute 

molecules that are inappropriately solvated. These molecules are hence "blocked" from 
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executing an excited-state tautomerization. The coexistence of these two types of solute 

molecules suggests a time scale for their interconversion. It is argued that >~ 10 ns are 

required for solvent to rearrange about the "blocked" species, converting it to a form that can 

undergo tautomerization during the excited-state lifetime. 

Materials and Methods 

Spectroscopic Measurements 

Time-correlated single-photon counting measurements were performed to determine 

fluorescence lifetimes. A Coherent 701 rhodamine 6G dye laser is pumped with about IW of 

532 nm radiation from an Antares 76-s CW mode-locked NdrYAG laser. (The remaining 

IW of second harmonic pumps a dye laser whose pulses are amplified to 1-2 mJ at 30 Hz by 

a regenerative amplifier. This branch of the experiment is used to perform pump-probe 

transient absorption spectroscopy and will be described in detail elsewhere.) The 701 dye 

laser is cavity-dumped at 3.8 MHz. The pulses have an autocorrelation of about 7 ps full 

width at half-maximum (fwhm). Excitation of 7-azaindoIe from 282 to 305 nm is effected by 

focusing the dye laser pulses with a 5 cm lens into a crystal of LiI03 or KDP. Fluorescence 

is collected at right angles through a polarizer mounted at 54.7° to the excitation polarization 

and then passed through an ISA H-10 monochromator with a 16 nm band-pass or through 

cutoff filters. A Hamamatsu 2809u microchannel plate, amplified by a Minicircuits ZHL-

1042J, and an FFD 100 EG&G photodiode provide the start and stop signals, respectively. 

Constant-fraction discrimination of these signals is performed by a Tennelec TC 455, and 

time-to-amplitude conversion, by an ORTEC 457. Data are stored in a Norland 5500 

multichannel analyzer before transfer to and analysis with a personal computer. The 

instrument function of this system has a fwhm of 50 65 ps and a full width at tenth maximum 

of 160-170 ps. 

Time-resolved fluorescence data were fit to a single exponential or to a sum of 

exponentials by iteratively convoluting trial decay curves with the instrument response 

function and employing a least-squares fitting procedure. A good fit was determined largely 

by the criterion [19]: 0.8 < ^ 1 -2. 

Sample temperature was controlled with a M9000 Fisher refrigerated circulator 

connected to a brass cell holder and monitored directly at the sample by an HH-99A-T2 
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Omega thermocouple. Steady-state, corrected fluorescence emission and excitation spectra 

were obtained with a Spex Fluoromax with emission and excitation bandpasses of 4 nm. 

Purification of 7-Azaindole 

Commercial preparations of 7-azaindoIe contain < 1% impurity (Sigma, personal 

communication). Thin-layer chromatography (TLC) on silica gel plates and ethyl acetate as 

eluent indicates that commercial 7-azaindole has an Rf ~ 0.60 and resolves two fluorescent 

contaminants having Rf ~ 0.15 (impurity 1) and 0.00 (impurity 2). To remove the impurities, 

flash chromatography [20] was performed using ethyl acetate. Fractions containing 7-

azaindole were concentrated and run through the flash column four times to ensure isolation. 

The 7-azaindole crystals were uniformly white and appeared as a single spot on TLC plates. 

The two impurities have nonexponential fluorescence lifetimes in water at neutral pH: 

impurity 1, F(t) = 0.38 exp(-t/607 ps) + 0.25 exp(-t/2035 ps) + 0.37 exp (-t/8895 ps); and 

impurity 2, F(t) = 0.18 exp(-t/383 ps) + 0.37 exp(-t/1087 ps) + 0.45 exp(-t/7414 ps). Samples 

were changed regularly. Subsequent to light exposure they were analyzed by TLC to monitor 

their integrity. 

Several groups have recently commented on the difficulty of obtaining pure 7-

azaindole and the problems that impurities may present in the interpretation of high 

resolution spectra [21], dynamic solvation [14], and the assignment of spectral features in the 

condensed phase [2]. It is thus important to characterize the spectral characteristics of 

purified 7-azaindole and of the other products that are contained in commercial 7-azaindole. 

Figure ! .3 presents the fluorescence emission spectra of purified 7-azaindoIe and the two 

isolated impurities in water. The significantly increased purity of our 7-azaindole preparation 

is supported by the superimposability of the excitation spectra obtained at three different 

wavelengths (Figure 1.4). These data are to be contrasted with the excitation spectra of the 

two impurities (Figure 1.5). 

At low pH (i.e., < 4), where the fluorescence intensity of 7-azaindole is diminished, a 

shoulder appears on the blue edge of the spectrum of commercial 7-azaindole [2]. This 

shoulder is not present in purified preparations of 7-azaindole. We further verified this 

observation by measuring the sensitivity of the emission spectrum of a mixture of impurities 

1 and 2 to pH and buffer. The position of the emission maximum (~ 375 nm at pH 1, 

unbuffered) corresponds to the blue shoulder observed in commercial 7-azaindole samples. 

We observe that this impurity emission shifts to the red when sodium acetate/acetic acid 

buffers are employed. In the presence of this buffer system and at pH >- 3, the 7-azaindole 
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Figure 1.3. Normalized fluorescence spectra in water at 20°C of (A) purified T-azaindole, 

(B) isolated impurity 1, and (C) isolated impurity 2. 
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Figure 1.4. Normalized fluorescence excitation spectra in water at 20°C of 7-azaindole. The 

detection wavelengths are indicated in the Figure. 
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Figure 1.5. Nonnalized fluorescence excitation spectra in water at 20°C of the two impurities 

isolated from commercial preparations of 7-azaindole: (a) impurity 1; (b) impurity 2. The 

detection wavelengths are indicated in the Figure. 
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emission obscures the impurity emission. The role of the buffer is probably to change the 

rate at which the acid-base equilibrium of 7-azaindole is attained in the excited state [35]. 

Purified 7-azaindole preparations, buffered and unbuffered, lack the aforementioned blue 

shoulder over the entire pH range. We have noted, however, that the fluorescence quantum 

yield of purified 7-azaindole increases in the presence of 0.01 M acetate: for example, at pH 

7 and 4.5 it is greater by a factor of ~ 2.5. Thus, for measurements discussed here, pH is 

adjusted only by the addition of HCl or NaOH (or by DCl or NaOD). 

Synthesis of Ni-methyl-7-azaindole (1M7AI) 

n-Butyl lithium and methyl-/?-toluenesulfonate were purchased from Aldrich 

Chemical Co. All other reagents used in the syntheses and purifications were purchased from 

Sigma Chemical Co. All solvents (Fisher) were reagent grade or higher. Identities of the 

methylated derivatives and purity of all compounds were determined using NMR, elemental 

analyses (Oneida Research Services), GC/MS, and TLC. 

An alternative to the method of Robison and Robison [22] for the preparation of 

1M7AI was employed. 7-Azaindole (5.95 g) was dissolved by stirring in 100 mL dry 

tetrahydrofuran chilled in ethanol/dry ice bath. Approximately 10 mg o-phenanthroline was 

added as an indicator. n-Butyl lithium (approximately 25 mL, 2 M in n-hexane) was added 

until the solution became colored. The mixture was stirred for ten minutes, then methyl 

iodide (7.20 g) in 50 mL dry tetrahydrofuran was added dropwise to the 7-azaindole/«-butyl 

lithium solution. Upon addition of methyl iodide, the reaction mixture became bright yellow. 

The mixture was allowed to warm up to room temperature with continued stirring. After 

twelve hours, the solution was orange and a white crystalline precipitate had formed. The 

reaction was followed by TLC. 

The solution was filtered to remove the precipitate. TLC showed the solution 

contained 1M7AI, unreacted starting materials, and side products. To isolate 1M7AI, flash 

chromatography was performed using four successive solvent systems; hexanes, ethyl 

acetate/hexanes (1:1), ethyl acetate, and methanol. The column set-up, running conditions 

and fraction collection were as described by Still et al. [20]. Fractions containing only 

1M7AI were combined and the solvent evaporated. The residue was a colorless oil. 

The NMR spectra obtained of our compound agree with those of Cox and Sankar [23] 

within ±0.15 ppm and had similar coupling constants. The absorption maximum is 287 nm 

in water (pH 7) and in methanol. The fluorescence maxima are 395 nm in water (pH 7) and 
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376 nm in methanol (A,ex = 285 nm). Anal. Calcd for C8H8N2; C, 72.69; H, 6.11; N, 21.20. 

Found: C, 71.05; H, 6.34; N, 20.90. 

Synthesis of 7-methyl-7£ir-pyrrolo[2,3-b]pyridine (7M7AI) 

7M7AI was prepared as outlined by Robison and Robison [22] using a p-

toluenesulfonate intermediate. The reaction was followed by TLC and showed that the 

resulting brownish-yellow oil contained 7M7AI, unreacted starting materials, and side 

products. 7M7AI was purified using flash chromatography [20]. Initially, ethyl acetate was 

run through the column to remove the side products and starting materials, then methanol 

was flushed through the column to collect 7M7AI. Fractions containing only 7M7AI were 

combined and the solvent evaporated. The residue was a yellow oil. 

The NMR spectra obtained for this compound agreed with those of Cox and Sankar 

[23] within ± 0.14 ppm and had similar coupling constants. The absorption maxima are 294 

nm in water (pH 7) and 306 nm in methanol. The fluorescence maxima are 442 nm in water 

(pH 7) and 509 nm in methanol (X-ex = 285 nm). Anal. Calcd for C8H8N2: C, 72.69; H, 6.11; 

N, 21.20. Found: C, 68.40; H, 6.66; N, 19.87. 

The p-toluenesulfonate intermediate of 7M7AI, 7-methyl-7f/-pyrrolo[2,3-b] pyridium 

f»-toluenesulfonate, is particularly interesting. This is the penultimate product in the synthesis 

of 7M7AI. The tosylate group acts as a counterion of 7M7AI that is protonated at Ni. This 

tosylate salt is easily synthesized and purified. We obtained white prismatic crystals (m.p. 

I34-135°C) and observed only one spot on TLC plates. The ground-state pKg of this 

compound is 8.52 [24]. The lifetimes of this intermediate over the pH range are similar to 

those obtained for 7M7AI (Table 1.1): 800 ps for the protonated species; 480 ps for the 

unprotonated species. Pump-probe experiments using the tosylate intermediate are similar to 

those of 7M7AI [3]. In short, we propose that the intermediate salt formed in the 7M7AI 

synthesis may be used as an alternative to 7M7AI in photophysical experiments since it yields 

similar results and is easy to produce and purify. 

Results 

Dependence of the Fluorescence Lifetime on Emission Wavelength 

7-Azaindole exhibits a single-exponential fluorescence decay of 910 ± 10 ps in water 

at neutral pH and 20°C if emission from the entire band (Xem ^ 320 nm) is collected [2,3]. 
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Table 1.1 

Summary of Fluorescence Lifetimes and Quantum Yields of 7-Azaindole (7AI) and Its Derivatives^ 

compound pH Tp '^rad'^ 1 max '^em 7l u max '^abs E" 

(lO'^s"') (nm) (nm) (M-1 cm-1) 

7AI 7 1.0 910 ± 10 ps 386 288 8100 [41] 

7AI(NiH+f 7 ~ 1100 ps^ ~ 1.0 -440 

1M7AI 11 18.30 21.0 ± 0.5ns 2.6 395 287 8300^ 

7M7AI 13 0.02 480 ± 20 ps 0.14 510 303 8800 [22] 

7AI (N7H+) 2 0.27 1.10 ±0.03 ns 0.74 444 290 8700 [41] 

1M7AI (N7H"*") 1 0.10 2.80 ± 0.20 ns 0.11 456 291 8300^ 

7M7AI (NiH+) 3 0.26 780 ± 10 ps 1.0 442 294 8500 [22] 

^ Experiments are performed at 20°C. 

All (l)p reported are relative to 7AI at pH 7 and 20°C. 
Calculations of krad are based on a value of 0.03 for the quantum yield of 7AI at neutral pH 
and ambient temperature [11]. 

^ Decadic molar extinction coefficient at the reported maximum of the absorption band. 
® The protonated tautomer species of 7AI at neutral pH. It is proposed that about 20% of the 

solute population is converted to this species. 
'^This lifetime is recovered from the 980 ps component that is observed when emission is 

collected at wavelengths longer than 505 nm. It represents a weighted average of the 
lifetime of the blocked solute (910 ps) and that of the protonated tautomer at neutral pH. 

® Estimated using the data of Robison and Robison for compounds dissolved in cyclohexane 
[22]. 
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The fluorescence decay, however, deviates from single exponential if emission is collected 

with a limited bandpass. For ?iem - ̂ 50 nm, a single exponential does not provide a 

satisfactory fit (Figure 1.6). An acceptable fit is obtained using two exponentially decaying 

components and indicates that about 20% of the fluorescent emission decays with a time 

constant between 40 to 100 ps (depending on the full-scale time base chosen for the 

experiment). Shorter lifetimes are obtained with a full-scale time base of 1.5 ns; longer 

lifetimes, with a full scale time base of 3.0 ns. The amplitude of this fast component did not 

depend on the time base chosen. A component with a 70-ps decay time is also detected in the 

transient absorbance of 7-azaindole in water [3]. There is no such rapid component in the 

fluorescence decay or the transient absorption of 7M7AI or IM7AI. We have thus attributed 

this rapid component to a small population of 7-azaindole molecules that undergo excited-

state tautomerization. For the duration of the discussion, we shall refer to this transient as the 

70-ps component because it is more clearly resolved in the transient absorption 

measurements [3]. (A 40-100-ps decay is too long to be attributed to solvation dynamics in 

water, which occur on a time scale of < 1 ps [25].) 

The 910 ps component that is resolved for Xgrn ^ 450 nm or when emission is 

collected over the entire band is attributed to the majority of the 7-azaindole molecules that 

are not capable of excited-state tautomerization. This assignment will be described in more 

detail below. 

When Xem > 505 nm, the fluorescence decay can be fit to the form F(t) = -0.69 exp(-

t/70 ps) + 1.69 exp(-t/980 ps). The long-lived component is observed to lengthen from 910 

to 980 ps. This lengthening of the lifetime at long emission wavelengths was reported earlier 

[2], but no significance was drawn to it. If the rise time of the fluorescence emission can be 

attributed to the appearance of tautomer, then for > 505 nm 10.69/1.691 ~ 0.40 is the 

fraction of tautomer present. The rest of the emission arises from 7-azaindole molecules 

incapable of tautomerization and characterized by a 910 ps lifetime. Thus, 980 ps represents 

the weighted average of 910 ps and a longer lifetime, namely ~ 1100 ps. This decay time is 

identical to that of protonated (pH <3)7 azaindole (Table 1.1). 

It is possible to constmct time-resolved emission spectra for these species. The 

fluorescence intensity at a given emission wavelength and time, F(X, t), is given by: 

(1)  
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Figure 1.6. Fluorescence decay of 7AI in water, pH 6.1, 20°C, Xgx = 288 nm, ^em ~ 380 nm 

(16-nm bandpass). The upper set of residuals corresponds to a single-exponential fit to the 

data, which yields a decay time of 816 ps with x" ~ 2.6. The lower set of residuals 

corresponds to a double-exponential fit yielding F(t) = 0.20 exp(-t/41 ps) + 0.80 exp(-t/835 

ps), = 1.2. 835 ps is obtained for the long-lived component instead of 910 ps because the 

1.5-ns time base is too fine to provide enough dynamic range to measure accurately an ~ 1-ns 

decay. In preliminary work [2] we could not resolve the short component because 

experiments were performed on a 6-ns full-scale time base. 
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where Fss(X,) is the steady-state intensity of fluorescent emission. The quantity in square 

brackets is the fluorescence decay measured at a given emission wavelength. The 

denominator is the integrated emission at this wavelength. Because solvation in water is 

extremely rapid [25], this expression differs from those used to evaluate transient Stokes 

shifts [26] in that Ti and X2 do not change appreciably over the range of emission 

wavelengths. Here, ti and X2 are considered to have distinct and clear physical meaning, 

although there are other instances where this may not be the case (see eqs 10 and 11). t] is 

attributed to the decay of the normal species (or the rise of the tautomer). 12 is attributed to 

another species that does not undergo excited-state tautomerization on the time scale of the 

fluorescence lifetime. (Owing to the low fluorescence intensity at Xem ^ 505 nm, not enough 

data could be collected to resolve the contribution of the ~ 1100-ps component and hence to 

distinguish its spectrum from that of the 910-ps component. In the spectral decompositions 

discussed here, T2 refers to either the 910- or the ~ 1100-ps component.) 

Figure 1.7 presents spectra at t = 0 and t = 1 ns for 7-azaindole and 7-azatryptophan. 

For 7-azaindole, at 480 nm the t = 0 and t = 1 ns spectra are scaled to have the same intensity 

because no short-lived component is resolved at this wavelength. In order to facilitate 

observation of the spectral evolution between t = 0 and t = 1 ns, the spectra are subsequently 

normalized to the same intensity at 380 nm. At 1 ns, the spectra are not as broad because 

there is no contribution from the short-lived component. 

The relative contributions of the short- and long-lived components to the steady-state 

fluorescence spectrum can be estimated as follows. For the short-lived component. 

(2) 

and for the long-lived component. 

(3) 

The decompositions of the steady-state spectra for 7-azaindole and 7-azatryptophan using 

these relations are depicted in Figure 1.8. The contribution from the short-lived component is 

multiplied by a factor of 10 in order to facilitate viewing. It is evident that the short-lived 
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Figure 1.7. Time-resolved fluorescence spectra of (a) 7-azaindole and (b) 7-azatryptophan at 

pH 6.8 and 20°C. The empty circles represent the spectrum at t=0; the solid circles, at t=l ns. 

The spectra are normalized to have the same intensity at 380 rnn. 
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Figure 1.8. Steady-state spectral decomposition of (a) 7-azaindoie and (b) 7-azatryptophan at 

pH 6.8 and 20°C. The empty circles represent the steady-state emission arising from the 

longer-lived lifetime component; the solid-circles, from the shorter-lived component. The 

spectrum of the short-lived component is multiplied by a factor of 10. 
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component contributes negligibly to the total fluorescence spectrum. Note that the spectrum 

of the short-lived component is different in 7-azaindole than in 7-azatryptophan. In 

particular, it drops off more quickly to zero in 7-azatryptophan: at 460 nm instead of 480 nm. 

Temperature Dependence and Deuterium Isotope Effect 

The temperature dependence of the short-lived component in H2O yields an 

Arrhenius activation energy of 2.7 ± 1.7 kcal/mol (Figure 1.9). Within the admittedly large 

experimental error, this result is comparable to the viscosity activation energy of H2O [27], E 
= 3 71 kcal/mol. In D2O the short-lived component yields an activation energy of 2.7 ± 

1.3 kcal/mol. This result is in accord with the large viscosity activation for D2O [27], £^^2© 

= 4.74 kcal/mol. (More precise measurements of the temperature dependence of the short

lived component are difficult owing to its small amplitude (Figure 1.6). This is especially 

true in D2O where the lifetime of the short-lived component is lengthened and hence more 

difficult to extricate from the double exponential decay.) These data are consistent with those 

for alcohols [2,12-14] indicating that large-amplitude solvent motion is required for 

tautomerization. 

At ambient temperature, the isotope effect on the 7-azaindole short-lived fluorescence 

lifetime is Tp(D20)/Tp(H20) ~ 3.4. Table 1.2 summarizes these data for the fluorescence 

quantum yields and lifetimes of 7-azaindoIe and indole derivatives. A clear trend is 

established. For 7-azaindole and its methylated derivatives the presence of a "full" Ni-H 

bond yields an isotope effect of > 2.6. The fluorescence quantum yields and lifetimes 

presented in Table 1.2 were collected over the entire emission band. Hence, since only a 

small fraction of the 7-azaindole molecules undergo excited-state tautomerization, it is 

unlikely that the observed isotope effect arises from this process. Under these detection 

conditions, the decaying and rising contributions will cancel each other out. If we assume 

that isotopic substitution affects neither the rate of photoionization nor that of intersystem 

crossing [28], then another nonradiative process must be involved. A likely possibility is S|-

Sq internal conversion. 

The deuterium isotope effect on the lifetimes and quantum yields suggests that the 

NjH or NjH+ bond may be a good accepting mode for internal conversion, just as has been 

demonstrated for the CH bond [30,31]. High frequency vibrations are good acceptors 

because fewer quanta are required in Sq than for a lower frequency vibration, thus providing a 

more favorable Franck-Condon factor for the SpSg radiationless process. Deuterium 

substitution lowers the frequency of the acceptor mode and hence decreases the Franck-
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Figvire 1.9. Arrhenius plots formed from the inverse of the short-lived lifetime component 

obtained from T-azaindole in H2O (open circles) or D2O (filled circles). For H2O, the 
10 

activation energy is 2.7 ± 1.7 Kcal and the Arrhenius prefactor is 2.3 ± 0.6 x 10 . For D2O, 

the activation energy is 2.7 ± 1.3 and the prefactor is 6.7 ± 1.2 x 10Experiments were 

performed at pH 6.8 cind pD 7.2. 
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Table 1.2 

Deuterium Isotope Effect on Fluorescence Lifetimes and Quantum Yields'* 

compound (1)F(D20)/(1)F(H20)'^ Tf(D20)/TF(H20)'= 

7AI(N7,NiH) 3.6 3.5 

7AI (N7H^ NiH) 2.7 2.6 

1M7AI (N7) 1.19[11] 1.2 

1M7AI (N7H+) 1.8 1.5 

7M7AI(Ni) 1.6 1.4 

7M7AI (NiH+) 2.6 3.1 

indole (NiH) 1.40 [11] 1.3 

1-methylindole 1.19[11] 1.1 

^ Experiments are performed at 20°C. 
^ The state of protonation of the relevant nitrogen atom is given by, for example, N7 or 

NyH"*". The pH regions in which N7 and Nj are protonated are presented in Figures 10 
and 11. 
All data obtained in our laboratory were collected over the entire emission band. 
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Condon factor and the nonradiative rate. The result is an increase in the fluorescence lifetime 

and quantum yield of S i. The enhancement of internal conversion due to hydrogen bonding 

interactions with the solvent is also a possibility. Inoue et al. [47] have demonstrated rapid 

internal conversion in anthraquinones in which the quinoid oxygen participates in a hydrogen 

bond. On the other hand, the small isotope effect in indole (Table 1.1) indicates that its 

lowest excited singlet is not significantly depopulated by internal conversion. The N] proton 

in indole may be less likely to interact strongly with water than that of the correspondong 

proton in 7-azaindole owing to the higher pK^ of indole (Table 1.3). 

7M7AI is a special case in that its fluorescence lifetime and quantum yield are the 

smal les t  o f  a l l  the  compounds  l i s t ed  in  Tab le  1 .1 ,  ye t  i t  does  no t  possess  a  cova len t  NjH 

bond. Waluk et al. [32] have discussed the role of internal conversion in 7M7AI and two of 

its derivatives in butanol and 3-methylpentane. While a hydrogen-bonding interaction with 

the solvent may contribute to the short lifetime and low quantum yield of 7M7AI, it is likely 

that internal conversion is most significantly enhanced by its reduced SpSo energy gap 

relative to 7-azaindole: 25,900 as opposed to 19,600 cm^'. For smaller energy gaps, the 

frequency of the acceptor vibrational mode is less crucial because fewer quanta are required 

in So [30,31]. 

pH Dependence of the Fluorescence Lifetimes and Quantum Yields of the Methylated 

Analogs 

In order to understand the nature of the fluorescent species of which the emission band of 7-

azaindole at neutral — or any pH — is comprised, it is important to appreciate the pH 

dependence of the fluorescence lifetimes and quantum yields of the methylated analogs. 

Earlier we concluded that there was a negligible change in the excited-state pK^ of the Ny of 

7-azaindole owing to the similarity of the potentiometric and the fluorescence titration curves 

[2]. Figure 1.10 presents the fluorescence quantum yield of 7-azaindole as a function of pH. 

The form of this titration curve is qualitatively similar to that presented by Ingham and El-

Bayoumi [8] except that we observe a more pronounced intensity change with pH. This 

change is a result of our accounting for the change in shape and position of the 7-azaindole 

spectrum with pH (Figure 1.10). The data yield an excited-state pKa of 4.6 and ~ 13 for 

N7H'^ and NiH, respectively (Table 1.3). These values are very near the ground-state values. 

We have obtained titration curves based on fluorescence lifetimes for 1M7AI and 

7M7AI in order to investigate in detail the excited-state, reversible proton-transfer 

equilibirum of N | and Ny. If, for example, the proton transfer equilibrium is not rapid on the 
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Table 1.3 

Ground- and Excited-State pKg Values of 7-Azaindole and Its Analogs 

compound pKa(So) pK^ (S i 

pyrrole 16.5 [38], 17.51 (25°C) [39] 

pyridine (H"*") 5.21 (18°C) [40] 

indole (NjH) 16.97 (25°C) [39] 12.3 [34] 

7AI(NiH) 12.1 (26°C) ~ 13 (23°C)'' 

7AI (N7H+) 4.5 (26°C)^ 4.59 (20°C) [41] 4.6 (23°C)^ 

7M7AI (NiH+) 8.9'' [22] 10.3 (20°C) 

1M7AI (N7H+)® 3.1 (20°C) 

® S1 refers to the fluorescent state, and hence to the lower of the two states, and 
4,16]. 

'' Obtained from fluorescence quantum yield measurements (Figure 1.10). It is assumed that 
acid-base equilibrium is established during the excited-state lifetime. No correction to 
the pKa value is made for the lifetimes of the protonated and unprotonated species [46]. 

^ The value reported earlier [2] was the inflection point of the titration curve. 
Determined by the half neutralization method. 

^ Not enough material was available after the optical measurements to perform the 
ground-state titration. 
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Figure 1.10. Fluorescence quantum yield of 7-azaindole as a function of pH at 20°C. 

Measurements are relative to those of T-azaindole at pH 8.8 and 20°C. These results are 

slightly different from those of Ingham and El-Bayoumi [10] who only measured the 7-

azaindole fluoresence intensity at 390 run and do not take the spectral shift with pH into 

account. pH measurements are accurate to ± 0.10 imits. 
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time scale of the excited-state lifetimes, then titration curves based on fluorescence of the 

excited-state lifetimes, then titration curves based on fluorescence measurements, in 

particular those of quantum yields, will not accurately measure the excited-state pK^. (3-

naphthol is a celebrated example of a molecule where the proton transfer equilibrium occurs 

on the same time scale as the excited-state lifetime [33-36,46]. Fluorescence lifetimes as a 

function of pH (Figure 1.11) are thus required to clarify the kinetics involved. In particular, 

we consider the tautomer analog 7M7AI (T) being protonated by water to yield TH"^ at 

neutral pH. 

r + H,0 ^ TH^' + OH-
- < 

hv, ex kpf" hv, ex 

T + H.O TH'-rOH-

kp^ and are the rates of population decay of the excited-state unprotonated and 

protonated species, not taking into account kH+ or k,H+. The solution [31,33,36] to the 

excited-state rate equations yields two rate constants, A-i and ^2, where represents the rate 

of decay of T*; A,2, of 

1- ^ X  +  Y T [ [ Y - X f + A k „ ^ k . , ^  [ O H - ]p (4) 

The subscript 1 corresponds to the minus sign. Constructing the sum and difference of A-i 

and A,2, which can be obtained from any point on the titration curve where two exponentially 

decaying components are present, permits the determination of k'l, k-|, and Kj, (or Ka). For 

7M7AI at pH 10.4 and 20°C (Figure 1.11), A,| = (361 ps)"' and A,2 = (629 ps)"'. kp^ = (480 

ps)"' and kpTH+ = (780 ps)"'; these latter values are the rates of population decay of 7M7AI 

and protonated 7M7AI in regions far away from the inflection point (Table 1.1). Results are 

tabulated in Table 1.3. There is only a .small change in pKy between the ground and the 
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Figure 1.11. Average fluorescence lifetime as a function of pH of 1M7AI and 7M7AI at 20° 

C. For 1M7AI, the points a, b, and c denote double-exponential lifetimes, a; 3.2 ns (81%), 

5.6 ns (19%); b: 2.3 ns (58%), 7.67 ns (42%); c; 1.9 ns (54%), 15.2 ns (46%). For 7M7AI, 

the points a and b indicate double-exponential lifetimes, a; 629 ps (64%), 361 ps (36%); b: 

603 ps (50%), 403 ps (50%). Titration curves obtained from fluorescence quantum yields of 

1M7AI and 7M7AI demonstrate the same behavior. 
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excited state for Ny and Nj; and the change that is observed indicates that in the excited state 

Ny is slightly more acidic and Nj is slightly more basic. Large excited-state pK^ changes 

have been documented in many systems [33-36,46]. The small difference, and its direction, 

reported here is thus surprising since it has been suggested [37] that the driving force for 

intramolecular tautomerization in molecules such as methyl salicylate is an excited-state pKg 

change. These data indicate that for 7-azaindole another excited-state mechanism is 

responsible for the tautomerization reaction. One possibility is that the impetus for this 

reaction is provided by the excited-state dipole moment change, which is responsible for 

dynamic solvation and the Stokes shift [14] of 7-azaindoIe. This solvent reorientation would 

be required to initiate a larger scale solvent reorganization. See discussion below. 

Figure 1.12 presents the steady-state fluorescence spectra of 1M7AI and 7M7AI as a 

function of pH. At pH values below 9, 7M7AI has a maximum at 442 nm; at pH values 

above 10, the maximum shifts to 510 nm. It is reasonable to assume that the tautomer form 

of 7-azaindole in water has an Nj whose pK^ is similar to that of 7M7AI. Therefore, after 

excited-state, double-proton transfer is effected in 7-azaindole, it is likely that N i will very 

rapidly become protonated and that this cation gives rise to a species with emission 

maximum at about 440 nm. 

Table 1.3 contains pKg data for pyrrole, pyridine, and indole, which serve as reference 

compounds. Fusion of a benzene ring to pyrrole to yield indole has a small effect on the pKa 

of N1. On the other hand, fusion of pyridine to pyrrole to yield 7-azaindole reduces the 

ground-state pKg of Nj by more than 4 units. For indole the excited-state pKg change is 

large, whereas in 7-azaindole, both for Ni and Ny, it is small as we have mentioned above. 

Discussion 

The Fluorescent Species in Water 

The 70-ps transient that we report elsewhere [3,4] in the transient absorbance of 7-

azaindole is consistent with the rapid component that we measure across the emission 

spectrum for 7-azaindole and 7-azatryptophan in water at neutral pH (Figure 1.6). This rapid 

decay, which is observed for emission wavelengths towards the blue edge of the spectrum, is 

matched by a rise time of corresponding duration on the red edge of the spectrum. We note. 
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Figure 1.12. Steady-state emission spectra of 7AI, 1M7AI, and 7M7AI in water, Xgx = 285 

nm and 20°C. All spectra are corrected for concentration differences. pH measurements are 

accurate to ± 0.10 units. The emission maxima as a function of pH are as follows. 

For 7AI: pH > 5.70, X^ax = 387 imi; pH 4.60, ?tn,ax = 394 nm; pH 4.00, Xmax ~ 424 

nm; pH 3.50, ^ax = 437 nm; pH < 3.00, X^ax ~ 444 nm. These data are more accurate and 

of higher quality than those presented earlier [2], 

For 1M7AI: pH > 4.20, Xn,ax 395 nm; pH 3.70, Xmax ~ 398 nm; pH 3.20, ~ 

402 nm; pH 2.75, A^ax ~ 435 imi. Not shown are spectra for pH <2.15. Below pH 2.15, A, 

max = 454 nm and the peak intensities are significantly less than that at pH 2.75. 

For 7M7AI: pH < 9.0, A^nax = 444 nm; pH 10.0, A-max ~ 482 nm; pH > 11.0, Xmax = 

510 nm. 
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however, that the amplitude of short component never exceeds 20% of the total fluorescence 

decay for 7-azaindole. 

This observation leads us to modify slightly our earlier suggestion [2] that the 

fluorescent species of 7-azaindole in water is tautomer-like. The rapid fluorescence decay 

and rise times clearly indicate that 20% of the excited-state 7-azaindole molecules are 

undergoing tautomerization. The Arrhenius plots (Figure 1.9) indicate that this 

tautomerization is mediated by large-amplitude solvent motion, just as is observed in the 

alcohols [2,12-14]. 

At this point, there are two major questions that must be posed: 

1. To what does the remaining 80% of the fluorescence decay in water correspond? 

2. If excited-state double proton transfer is being effected in water, even for only 20% of 

the population, why does the fluorescence spectrum apparently consist of only one 

band whereas in alcohols, which also mediate tautomerization, two emission bands 

are observed? 

The Presence of a "Blocked" Solute Species. To address the first question, we 

propose that there are three types of species of 7-azaindole in water that give rise to its 

fluorescence spectrum. These are illustrated in Figure 1.13. Twenty percent of the 

population is solvated in such a fashion that excited-state tautomerization can be effected in 

70 ps. This population then comprises "normal" and "tautomer" species that are formally 

equivalent to those observed in linear alcohols. The normal species has a lifetime of 70 ps; 

and the tautomer, which is protonated, has a lifetime of 1100 ps. We suggest that the 

fluorescence properties of 7-azaindole in water are dominated by the remaining 80% of the 

solute molecules, which are "blocked" and unable to tautomerize during the 910 ps lifetime 

of this species. 

In order to check this assignment, we can estimate the fluorescence quantum yield 

that would be observed if these three species were present and compare this estimated value 

to the measured fluorescence quantum yield of 7-azaindole in water, (1)f = 0.03 [11] (Table 

1.2). The fluorescence intensity as a function of time, when emission is collected over the 

entire spectrum, is given by the rate at which photons are emitted from all excited states 

present: 

I 

(5) 
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Figure 1.13. Idealized depictions of 7-azaindole/H20 interactions. 
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where Rr' is the radiative rate of species i and Fi(t) is the excited-state population at a given 

time (the fluorescence decay profile) of species i. In our case, Fi(t) is expressed as an 

exponential decay or as a sum of exponentially rising and decaying components. The 

fluorescence quantum yield is obtained by integration of this equation over time: 

= (6) 
0 

We thus obtain: 

) (o.20)(l 100) + (0.80)(91 Ops) = 0.025 

This estimated result is in good agreement with the measured value of 0.03 when one 

considers the difficulties in obtaining accurate measurements for quantum yields as well as 

for the radiative rates and the weight of the short component that represents the 7-azaindole 

population undergoing tautomerization. 

Blocked solvation, referred to above, could be produced if N] forms a strong 

hydrogen bond with water that results in an orientation that is not propitious for proton 

transfer or if Ny is also "blocked" by forming another hydrogen bond with a different water 

molecule (Figure 1.13). Postulating this state of blocked solvation — and most importantly a 

strong hydrogen bonding interaction of Nj with the solvent — resolves the following 

paradoxical observations: the maximum of the fluorescence emission of 7-azaindole in 

water, 386 nm, is closer to that of unprotonated 1M7AI, 395 nm, than to that of protonated or 

unprotonated 7M7AI, 442 or 510 nm, respectively. On the other hand, the fluorescence 

lifetime of 7-azaindole in water is more similar to that of protonated or unprotonated 7M7AI, 

780 ps or 480 ps, than to that of unprotonated 1M7AI, 21 ns. 

The substitution of the hydrogen by a methyl group at N) renders 1M7AI incapable of 

tautomerizing and hence provides a relatively high fluorescence quantum yield, (t)F = 0.55-

0.64 [11] (Table 1.1). Presumably, the only significant nonradiative decay channels left to 

1M7AI are photoionization and intersystem crossing [3]. 

The fundamental difference between the blocked species and IM7AI is the proton at 

N], which can interact with the solvent. We propose that the presence of this proton bound 
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to Nj is responsible for the position and shape of the fluorescence band of the blocked 

species of 7-azaindole in water— that is, similar to that of IM7AI. On the other hand, we 

suggest that the availability of the high-frequency NjH bond is responsible for the reduced 

lifetime and fluorescence quantum yield of this species through Si-Sq internal conversion. It 

is possible that the interaction of the proton with the solvent also enhances the rate of internal 

conversion to the ground electronic state [37,47]. 

It is noteworthy that the fluorescence lifetime and quantum yield of this blocked 

species are more similar to those of protonated 7AI, 1M7AI, and 7M7AI than to those of the 

unprotonated tautomer analog, 7M7AI (Table 1.1). This supports the notion that the blocked 

species is also undergoing an interaction of its Ny with solvent, as depicted schematically in 

Figure 1.12. 

The Importance of the Relative Acidities of Nj and Ny_ In order to address the 

second question raised above, it is important to note that consideration of the steady-state 

fluorescence spectrum of 7-azaindole in water requires an appreciation of the relative 

acidities of Nj and N7. A considerable amount of confusion may ensue if one expects to 

observe, for the fraction of molecules undergoing tautomerization, fluorescence emission in 

the red ~ 510 nm) as is observed for the tautomer of 7-azaindole in methanol or for 

7M7AI in methanol. Instead of bimodal emission at neutral pH, one only detects a long-

wavelength tail (Figure 12). This apparent discrepancy is easily resolved when one notes that 

N| in the tautomer (e.g., 7M7AI) is very basic: excited-state pKa = 10.3 (Figure l.11, Table 

1.3). Owing to the basicity of N], upon excited-state tautomerization of the small subset of 

appropriately solvated molecules, it is likely that Nj is immediately protonated. Protonated 

7M7AI has an emission maximum at 444 nm; and this is consistent with the shape of the 7-

azaindole spectrum at low pH (Figure 1.12). 

Population Decay, Tautomerization, and Solvent Reorganization ("Dynamics") 

The physical picture that we have so far obtained for the photophysics of the 7-

azaindole chromophore in water is the following: 

1. At ambient temperature there is a ground-state equilibrium between a set of 7-

azaindole molecules that can tautomerize (N) and that is analogous to the normal 

species referred to in linear alcohols and a set of 7-azaindole molecules that are 

solvated in such a fashion that tautomerization is blocked (B). 
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2. For 7-azaindole, based on the preexponential factors obtained from wavelength-

resolved lifetime measurements, we estimate the equilibrium constant to be at most K 

= ki/k-i = [N]/[B]=0.25. 

3. N and B do not interchange rapidly on the time scale of their fluorescence lifetimes, 

70 ps and 910 ps, respectively. 

4. The tautomer (T) formed by the decay of N is rapidly (<~ 1 ps) protonated (TH"*") 

owing to the strong basicity of Ni relative to that of Ny (pKa*(Ni) = 10.3 as opposed 

topK/(N7H+) = 3.7). 

5. The protonated tautomer decays with a time constant of 1100 ps. 

There are two reaction schemes that are consistent with these data and conclusions. 

Scheme 1 

( ^ ^ JY ^>r=(70|w)"' ^ Y'l *H*H1/") ^ 
/. L J 

TH* <^?'*=('ioo/M)-' ^ 

Scheme 2 

^ <.-^=(9IO,;.v)-' ' N  ) C ) t \ 

_ n.rr+ A?'*=(l lOOttV)"' -^TH* =(IIOO/«)'' ^ 

The difference between these two schemes is contained in the square brackets. While 

Scheme 1 is the simpler of the two. Scheme 2 introduces another aspect of the 

tautomerization reaction that makes the physics in water conform more nearly to that of 7-

azaindole dimers in nonpolar solvents and 7-azaindole in alcohols. In particular, 

Hochstrasser and coworkers have observed tautomerization to occur in 1.4 ps in 7-azaindole 

dimers at ambient temperature. These dimers are considered to be planar complexes in 

which there are two hydrogen bonds [6-8]. Similarly, it has been argued [2,11-
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14] that in alcohols, for example methanol, the 140 ps decay time of the normal species 

represents the time required for a cyclic hydrogen bonding complex to be established between 

solute and solvent. Upon formation of this complex (Figure 1.13), tautomerization occurs in 

<~ 1 ps. The proposal of a time constant of <~ 1 ps for the ultimate protonation step is based 

on the following. First, fast protonation is facilitated by the availability of the proton from 

the water molecule that participated in the cyclic complex. Thus, this reaction may be 

considered as essentially intramolecular, insofar as it depends on a solute-solvent complex, 

rather than as intermolecular. Second, since no long-wavelength emission is observed, the 

unprotonated tautomer must decay as rapidly as it is formed. Third, a time constant of this 

duration is consistent with the estimated lifetime of a hydrogen bond, ~ 5 ps [48]. 

Scheme 2 brings the water problem in line with the dimer and alcohol systems. Here, 

the 70 ps  decay  o f  N  i s  the  resu l t  o f  a  second  so lva t ion  s tep  tha t  i s  much  more  rap id  than  k j .  

The large activation energy associated with the 70-ps component is consistent with large-

amplitude solvent motion and should be compared with the Arrhenius activation energies 

obtained from the decay times of the normal species in alcohols: here the activation energy 

agrees very well with the viscosity activation energy of the solvent. Once the second 

solvation step occurs to form C, a "cyclic hydrogen-bonded complex," tautomerization occurs 

as rapidly as in dimers or alcohols. 

In the above discussion, we have tacitly assumed that the 910 ps and 70 ps decay 

components represent the population decay of B and N respectively and are not significantly 

perturbed by the rate constants for solvent reorganization, k] and k-|. These assumptions 

then  requ i re  us  to  p lace  ce r ta in  l imi t s  on  k j  and  k- i -

If we consider only the equilibrium between B and N and their population decays, we 

obtain the following expressions by solving the rate equations using Laplace transform 

techniques [42]. Here we assume that at t = 0, the populations of the excited-state blocked 

and normal species are nonzero and that [N]o/[B]o = 0.25. 

W) ̂  - X)exp(-A,,i)+(Z-X,,)exp(-X.2f)]+-^^L^^(exp(-X,f)-exp(-X.2z)) (8) 

[A^](0= ^(exp(-A,.0-exp(-A,,/))+^J^  ̂^[(X,-r)exp(-^if)+(r-^i)exp(-^,r)](9) 
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X, ,  X+r+{( r -Z) -+4yk_ , j t , }2  (10) 

where subscript I refers to the negative sign; and subscript 2, to the positive. In general, 2 

depend on the nonradiative and radiative pathways of deactivation of B and N as well as on 

ki and k-j. Thus, 

where kp^ and kpN are the inverse of the fluorescence lifetimes of B and N, neglecting the 

contribution from kj and k.j. 

From eqs 10 and 11 it can be seen that if kp^ » k] and if kpN » k.i, then X] = kp® and 

A,2 = kpN. It is interesting to consider the physical implications of how small kj and k.i must 

be relative to kp^ and kp^ in order for A,) - kp® and X,2 ~ kp^. If we arbitrarily choose ki = 

O.I X 10^ s"', the equilibrium between B and N requires k-i = 0.4 x 10^ s"'. Then from eqs 

10 and 11 we obtain l/^i = 837 ps ~ tp® and I/X2 = 68 ps ~ XpN. In other words, if we 

require that the solvation step converting B to N occurs on a time scale of 10 ns or longer, we 

recover decay components that are qualitatively similar to the measured 910 ps and 70 ps that 

we have attributed to the population decay times of B and N, respectively. 

Two additional self-consistency checks arise from these assumptions. First, the total 

fluorescence intensity, which is proportional to the sum of the transient populations of B and 

N, assuming that their radiative rates are identical, yields from eq 5 I(t) = kR[B](t) + kR[N](t) 

0.80 exp(-?Lit) + 0.20 exp(-A,2t). Thus, we retrieve 20% of a species decaying rapidly, 

which is in agreement with the experimental observation of the proportion of the 7-azaindole 

population that is capable of tautomerization. Second, using the above values, we find that 

(X - Xi) ~ 0 and that [B]o(}i,2 - X)/k.][N]o » 1. Thus, B decays essentially as a single 

exponential, as is observed. 

One may ask whether the reorganization of water molecules about the solute can 

occur on such a slow time scale. It is important to distinguish the time scales involving 

reorientational dynamics of solvent molecules, which can be extremely rapid [10,43], and 

"diffusive redistribution" of solvent. In particular, one must distinguish between the kind of 

solvent reorientation that is induced by dipole moment changes in the excited state of a probe 

molecule and reorganization of the solvent that involves the breaking and making of 

X = kj + kp®; Y = k., + kpN (H) 
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hydrogen bonds. It has been noted that in polyalcohols such as ethylene glycol and glycerol 

there is a severe deviation, characterized by unusually slow tautomerization, from the good 

correlation of tautomerization rate with EjCSO) that is observed with monoalcohols [14]. It 

has been suggested that this deviation is a signature of solvents capable of donating more 

than one hydrogen bond per molecule and that such solvents reduce the probability of 

forming solute molecules with the "correct" solvation for tautomerization [14,43]. The 

detailed mechanism of the rate reduction peculiar to these solvents is still unknown. 

Conclusions 

Recently two related studies of 7-azaindole have been performed. Chou et al. [44] 

investigated 7-azaindole in mixtures of water and aprotic solvents. Small additions of water 

to polar aprotic solvents produced tautomer-like emission. They proposed that excited-state 

tautomerization is possible only when there are significant concentrations of 1:1 complexes 

of 7-azaindole and water. They further proposed that in pure water the formation of higher-

order aggregates inhibits tautomerization during the excited-state lifetime. 

Chapman and Maroncelli have studied 7-azaindole fluorescence in water and in 

mixtures of water and diethyl ether [43]. They too observe long-wavelength, tautomer-like 

emission at low water concentrations. In pure water they also observe a rapid rise time at 

long wavelengths. They, however, take a different point of view, namely that excited-state 

tautomerization occurs for the entire 7-azaindole population in pure water and that the 7-

azaindole fluorescence lifetime is dominated by this reaction. Using a two-state kinetic 

model in conjunction with steady-state spectral data they conclude that the rapid rise time is 

associated with the nonradiative decay rate of the tautomer. They propose that the longer, ~ 

900 ps, decay time of the entire emission band is a measure of the tautomerization rate. Their 

scheme requires that the nonradiative decay rate of the tautomer is greater than the rate of 

tautomerization. They estimate that the rate of tautomerization is 1.2 x 10^ s"'. 

Our observations and conclusions more nearly approach those of Chou et al, 

although there is a small population of 7-azaindole molecules that do tautomerize in addition 

to the majority of the population in which this reaction is frustrated. That the fluorescence 

lifetime of 7-azaindole is not dominated by excited-state tautomerization is demonstrated by 

the observation of three distinct fluorescence lifetimes: ~ 70 ps, the normal decay time; ~ 

980 ps (i.e., 1100 ps (Table 1.3)), the tautomer decay time; and 910 ps, the decay time of the 
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blocked solute. Further evidence is provided by the spectral inhomogeneity of the emission 

band (Figures 1.7 and 1.8). 

The major conclusions of this article can be summarized as follows: 

1. Only a small fraction (<~ 20%) of 7-azaindole molecules in pure water are capable of 

excited-state tautomerization on a 1-ns time scale. 

2. The majority of the 7-azaindole molecules are solvated in such a fashion that 

tautomerization is blocked. More than 10 ns are required to achieve a state of 

solvation that facilitates tautomerization, that is, to convert the "blocked" species into 

a "normal" species. 

3. The 70-ps time constant that is observed in fluorescence and absorption 

measurements reflects a subsequent reorientation of the solvent that establishes a 

"cyclic complex" between solvent and solute. Formation of this complex permits an 

~ 1 ps tautomerization step, as has been discussed for 7-azaindole in alcohols and 7-

azaindole dimers in nonpolar solvents. 

4. No significant emission intensity is observed for 7-azaindole in water at 510 nm 

because so little tautomer is produced and because the tautomer that is produced is 

rapidly protonated and has an emission maximum at ~ 440 nm. 

5. Optical titration of the methylated 7-azaindole analogs confirms that there is a 

negligible pK^ change of N7 and N1 of 7-azaindole in the excited state. Thus, an 

excited-state pKa change cannot be the "driving force" for the tautomerization 

reaction, as has been suggested for other systems. 

6. For 7-azaindole in water, excited-state tautomerization and intersystem crossing seem 

to be relatively minor pathways of nonradiative decay. Photoionization from a 

higher-lying excited singlet has been suggested to be quite facile [3,4]. In addition 

S]-So internal conversion may play an important role when Nj is bound to a hydrogen 

or interacts strongly through hydrogen bonding with the solvent. This latter process is 

most likely responsible for the previously mentioned [2] "tautomer-like" behavior of 

the species in water (i.e., relatively short fluorescence lifetime, low quantum yield, 

deuterium isotope effect). 

7. Most importantly these results clarify the photophysics of 7-azaindole for use as the 

intrinsic chromophore of the probe molecule, 7-azatryptophan. In particular, the 

minor amount of tautomerization will contribute to the decay kinetics only if emission 

is collected at wavelengths red of 505 nm or with a relatively narrow spectral 

bandpass (with adequate temporal resolution). This is not a serious restriction since 
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experiments are not likely to be performed with such spectral resolution owing to the 

low fluorescence intensity. When emission is collected over a large spectral region 

and on a full-scale time base coarser than 3 ns, the tautomerization reaction is 

imperceptible. On the other hand, the appearance of long-wavelength emission of a 

protein containing 7-azatryptophan in water would definitely signal a change of 

environment that facilitates tautomerization. 
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CHAPTER 2. STEADY-STATE AND TIME-RESOLVED FLUORESCENCE 

ANISOTROPY OF 7-AZAINDOLE AND ITS DERIVATIVES 

A paper published in the Journal of Physical Chemistry^ 

R. L. Rich^, Y. Chen^, D. Neven^, M. Negrerie^^ F. Gai^, and J. W. Petrich2'4 

Abstract 

The fluorescence excitation and excitation anisotropy spectra at -60°C in a propylene 

glycol glass are reported for 7-azaindole and three related derivatives; 7-azatryptophan, Np 

methyl-7-azaindole (1M7AI), and 7-methyl-7//-pyrrolo[2,3-6]pyridine (7M7AI). At the 

reddest excitation wavelengths, steady-state anisotropy values are observed in the range 0.17 

to 0.23, which is significantly less than the theoretical limiting anisotropy of 0.4. The 

anisotropy spectra indicate the presence of closely-spaced and bands as in indole. 

The low temperature anisotropies are compared with results from time-dependent 

measurements. An alternative method of collecting fluorescence depolarization data in time-

correlated single-photon counting experiments is also presented. It is reliable, provides long-

term stability, which is essential for weakly fluorescent samples, and obviates the need for 

"tail matching" scaling procedures. This method is tested with the well-characterized 

fluorescein derivative, rose bengal, and is employed to compare the rotational diffusion times 

of the normal and the tautomer species of 7-azaindole in methanol and butanol with that of 

the fluorescent, "blocked," species of 7-azaindole in water. 

1 Reprinted with permission from Journal of Physical Chemistry 1993, 97, 1781. Copyright 
© 1993 American Chemical Society. 
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Introduction 

7-Azaindole (Figure 2.1) is the chromophoric moiety of the nonnatural amino acid, 7-

azatryptophan. We have proposed 7-azatryptophan as an alternate to tryptophan for use as an 

optical probe of protein structure and dynamics [1-5]. The suitability of 7-azatryptophan is 

based on its single-exponential (780 ps) fluorescence decay (when emission is collected over 

the entire band), its spectroscopic distinguishability from tryptophan in both absorption and 

emission, and its amenability to peptide synthesis and bacterial incorporation. 

To use 7-azatryptophan as a probe of protein structure and dynamics it is crucial to 

understand the photophysics of the 7-azaindole chromophore in water. We have obtained 

evidence for four nonradiative processes: photoionization, intersystem crossing, internal 

conversion, and excited-state tautomerization [3-5]. Unlike its dimer [6-10] or when it is in 

alcohols [11-14], 7-azaindole in water exhibits only a minor amount, <~ 20%, of excited-

state tautomerization [3-5] (Figure 2.2). In fact, when emission is collected over the entire 

band, tautomerization is imperceptible because the fluorescence decay time of the population 

which can tautomerize, the "normal" species, is compensated for by the fluorescence rise time 

of the tautomer [3-5]. Chou et al. [15] have also discussed the inability of 7-azaindole in 

water to execute double-proton transfer [16]. Because tautomerization of 7-azaindole in 

water is not facile, the fluorescence spectrum is smooth with a single maximum at 386 nm 

instead of bimodal as it is in alcohols (e.g., for methanol A-max = 374, 505 nm). The small 

fraction of molecules that do tautomerize are most likely rapidly protonated and have an 

emission maximum at ~ 440 nm [5]. 

While much has been learned about the photophysics of 7-azaindole, there are 

outstanding questions that must be resolved in order to appreciate fully its use as a biological 

probe: how does the electronic structure of 7-azaindole differ from that of indole and how do 

these differences result in the "well-behaved" photophysics of 7-azatryptophan, which are 

exemplified by its single-exponential fluorescence lifetime as opposed to the nonexponential 

fluorescence lifetime of tryptophan [1,17]? 

In order to provide answers to these questions, we have performed fluorescence 

excitation anisotropy measurements of 7-azaindole in order to compare its excited-state level 

structure with that of indole. Valeur and Weber [18] resolved the fluorescence excitation 

spectrum of indole into overlapping 'La and 'Lb bands at -58°C in propylene glycol and 

reported the 'Lb transition to be quite structured with maxima at 282.5 and 289.5 nm. They 

reported the 'Lg transition to be broader and to absorb farther to the red than the 'Lb 
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Figure 2.1. Structures of (a) indole; (b) 7-azaindole; (c) 7-azatryptophan; (d) Ni-methyl-7-

azaindole; and (e) 7-methyl-7//-pyrrolo [2,3-^']pyridine (7M7AI). 
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tautomer normal 

Figure 2.2. Structures of (a) hydrogen-bonded cyclic complex of 7-azaindole with a linear 

alcohol or water molecule and (b) the tautomeric form of this complex. 
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transition. An important question is whether 7-azaindole and related compounds share these 

features in common with indole or whether the nitrogen at the 7 position is sufficient to 

perturb significantly the overlap of these two bands. The purpose of this article is thus to 

investigate, through fluorescence excitation spectra and fluorescence excitation anisotropy 

spectra, the lowest lying electronic transitions of 7-azaindole and its analogs. In addition to 

7-azaindole and 7-azatryptophan, we investigate derivatives that mimic untautomerized and 

tautomerized 7-azaindole: Ni-methyl-7-azaindole (1M7AI) and 7-methyl-7//-pyrrolo[2,3-

Z7]pyridine (7M7AI) (Figure 2.1). We reproduce the results of Valeur and Weber for indole. 

The fluorescence excitation spectra for indole and the 7-azaindoles are decomposed into ^La 

and 'Lb components using the conventional analysis [18,21]. We shall discuss in detail when 

such an analysis may be inappropriate. For 7-azaindole, we compare the steady-state low 

temperature anisotropy, ro, with the limiting anisotropy, r(0), obtained in time-dependent 

measurements in the liquid phase. 

Experimental 

Materials 

Indole and D,L-7-azatryptophan (Sigma Chemical Co.) were used without further 

purification. 7-Azaindole (Sigma) was purified via flash chromatography [3,5,19] using ethyl 

acetate as a solvent. Detailed methods of synthesis and purification for 1M7AI and 7M7AI 

have been described elsewhere [5,20]. For the steady-state measurements, compounds were 

dissolved in propylene glycol to make 10-50 |J,M solutions. Solutions of low concentration 

are required to prevent aggregation of the solute during cooling. 

Steady-State Measurements 

Steady-state measurements were performed using a Spex Fluoromax (error of ± 0.5 

nm) adapted to hold a quartz-windowed Dewar flask containing a 5 mm-diameter quartz 

sample tube. A methanol/dry ice slurry maintained a sample temperature of less than -60°C. 

All spectra were corrected. A 1-nm band-pass was used for excitation and emission. 

We follow the procedure outlined by Valeur and Weber [18] and utilized by Eftink et 

al. [21] for the resolution of the excitation anisotropy spectra into two bands arising from 'La 

and 'Lb electronic transitions. 
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The steady-state anisotropy, TQ, of a system is given by 

^11 -h 

L +21, 
(1) 

where I|| is the emission polarized parallel to the excitation source and Ij. = gl\. g is a 

correction factor for the polarization dependence of the emission monochromator; and I*^ is 

the uncorrected intensity of emission polarized perpendicular to the excitation source, g is 

obtained for a sample at room temperature, where the steady-state emission is expected to be 

completely depolarized. For our experiments, we define 

where the excitation source is polarized vertically in the laboratory frame for both emission 

measurements. 

Time-Resolved Measurements 

The time-correlated single-photon counting apparatus [5] and the data analysis for 

fluorescence anisotropy measurements are described elsewhere [22,23]. The time-dependent 

anisotropy, r(t), is constructed in a manner similar to that of its steady-state counterpart. It is 

related to the correlation function of the transition dipole moment for absorption to state i at 

time zero, |J.'abs(0)' the transition dipole moment for emission from state i at subsequent 

times, t, |x'emW- P®'" ^ sphere undergoing rotational diffusion by Brownian motion [24]: 

(0 + 2/ (/) " 5 " 5 (cos0)exp(-f / x,) (2) 

I||(t) and Ii(t) are the time dependent fluorescence intensities parallel and perpendicular to the 

excitation polarization. P2 is the second Legendre polynomial, 0 is the angle formed by )J. 

al3s(0) and M-emW' is the diffusion relaxation time for a sphere (i.e., Xr = 1/6 D, D being 
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the diffusion coefficient). Accurate construction of the fluorescence anisotropy decay 

function demands that the sample be exposed to equivalent excitation intensity during the 

collection of the parallel and perpendicular emission profiles. Numerous methods have been 
proposed for the normalized collection of I||(t) and Ij.(t). They have been summarized by 

Cross and Fleming [23]. In general, these methods fall into two categories: genuine 

simultaneous collection or alternate sampling procedures. If these methods are not adequate, 

the two curves must be scaled, "tail-matched," to have equal intensity at times where the 

fluorescence emission is expected to be depolarized. In the following, we present a method 

for acquiring fluorescence depolarization data without recourse to scaling procedures. This 
technique is based upon alternate detection of I||(t) and Ix(t), obviates the need for scaling 

procedures, and permits very precise measurements of fast reorientation times. 

Automation of both polarizer movement and multichannel analyzer (MCA) operation 

provides our apparatus with the capability of sampling fluorescence at multiple orientations 

of the analyzer polarizer. A polarizer (Polaroid, HNP,B) is mounted on a modified motorized 

rotation stage (RSA-ITM, Newport Corp.) and is synchronously controlled in conjunction 
with the MCA (Norland 5500), making possible alternate readings of I||(t) and Ix(t). 

Polarization bias in our system is negligible. By alternately acquiring I||(t) and Ii(t), one may 

compensate for drift in the laser system over long periods of time, at least up to seven hours, 

thereby allowing for the collection of fluorescence depolarization data without recourse to 

scaling procedures. (Long-term drift in electronic components may still present a problem 

that is more difficult to compensate for.) Such compensation is crucial if the sample is 

weakly fluorescent and many hours of data accumulation are required. An IBM 386 clone 

controls both the rotation stage and the MCA under the direction of Asyst software, an 

advanced fourth-generation data acquisition and analysis language. Data transfer and MCA 

control are achieved over an RS-232 serial link connecting the computer to the MCA. The 

motorized rotation stage is interfaced to the computer via a parallel port connection to a 

manual-stage controller (Newport 860 SC-C). The operator specifies the data names in 
which to store the I||(t) and Ij.(t) data, the maximum count of any channel that will terminate 

the experiment, the length of the I||(t) and Ij.(t) acquisition times (usually 1-5 minutes), and 

the present orientation of the analyzer polarizer. Approaches similar to ours have been 

presented [25-32]. For example, Fayer and coworkers use a Pockels cell to rotate the 

polarization of their excitation beam by 90° every 20 seconds [33,34]. Millar et al. [35] 

describe an apparatus for sampling parallel and perpendicular emission intensities; but they 
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do not discuss tiie long-term reliability of their system, nor are the results calibrated against a 

standard. 

One of the most thoroughly investigated dye molecules is the fluorescein derivative, 

rose bengal [33,34]. Figure 2.3 presents the data obtained for rose bengal in methanol at 20° 

C using an acquisition time of one minute for the I||(t) and Ii(t) curves. These data yield 

results that are in excellent agreement with literature values; ten measurements of I||(t) and 

ten measurements of Ij.(t) yield a limiting anisotropy, r(0) = 0.360 ± 0.003, and a rotational 

diffusion time, Tr = 173 ± 5 ps. Above Figure 3 are displayed three sets of residuals 

corresponding, from top to bottom, to sampling times of 15, 2, and 1 min. As the sampling 

time is decreased, the fit of the data to a monoexponential anisotropy decay progressively 

improves, as measured by the criterion, from = 1.60, 1.26, and 1.05. More importantly, 

attendant to this improvement in the fit is an increasingly more accurate value of the 

rotational diffusion time: 166 ps for a 15-min. sampling time and 179 ps for a I-min. 

sampling time. The deviation in the residuals for the 15-minute sampling clearly indicates 

drift in the laser intensity on this time scale. In these experiments we have made no special 

effort to ensure long-term stability of our excitation source since our main concern is to 

demonstrate that in its absence it may be compensated for — especially when long 

accumulation times are required. 

Results 

Resolution of the Steady-State Fluorescence Excitation Spectrum into ^La and 

Bands 

Valeur and Weber [18] and Eftink et al. [19] have used the results of steady-state 

fluorescence excitation anisotropy spectra to resolve the fluorescence excitation spectra of 

indole and its analogs into 'La and 'Lb spectra. The procedure is as follows. The measured 

steady-state anisotropy, ro(A,), is considered to be the sum of the contributions of the 

transitions connecting 'La and 'Lb with the ground state 

ro(?i) = f^(X,)roa + f''(A,)rob (3) 

where roa and rob are the anisotropics of each transition and f(?i) + f''(A-) = 1. rob is obtained 

from roa by the relation 
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Figure 2.3. Fluorescence depolarization data for rose bengal in methanol at 20 ± 0.5°C using 
1-minute accumulations: the upper trace corresponds to raw data for 11 (t); the lower, to Ii(t). 

Xqx = 570 nm, Xem ^ 650 nm. Residuals obtained by fitting rose bengal anisotropy decays to 

one exponential are displayed above. The different sets of residuals correspond to different 

accumulation times for the rose bengal experiment. In descending order, we have: 15-

minute accumulations (2.5-hour total acquisition time), r(t) = 0.361 exp(-t/166 ps), y} = 1.60; 

2-minute accumulations (3.0-hour total acquisition time), r(t) = 0.360 exp(-t/172 ps), % = 

1.26; 1-minute accumulations (3.5-hour total acquisition time), r(t) = 0.360 exp(-t/179 ps), 

= 1.05. In all cases, the data were collected to 16,000 counts in the maximum channel. The 

excited-state decay was well-described by a single exponential with a 532-ps time constant. 

The rose bengd experiments were performed with an excitation wavelength at 570 nm and a 

power of 60 mW. For the 7-azaindole experiments, approximately 60 mW of 570-610 nm 

radiation was frequency doubled in a KDP crystal and used as the excitation pulse. The dye 

laser, pumped with ~ 1 W of the second harmonic of a cw mode-locked Nd:YAG was cavity 

dumped at 3.8 MHz. The instrument response function had a full-width at half maximum of 

50-70 ps. 
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assuming roa = Tq at the reddest excitation wavelengths. For indole, the angle formed by the 

emission dipole moments of 'La and 'Lb is believed to be very close to 90° [35]. It is also 

assumed that •Htm )= ^ )- ̂ • ^he 'La and 'Lb fluorescence excitation 

spectra, Ia(A,) and Ib(A,), are thus resolved using the following relations, roa and rob are 

defined as the limiting steady-state anisotropics of a single emissive transition 

oa ob 

(4) 

. r -
fb(?l)=-

foa-l-ob 

y?L) = fW(A.) 

(5) 

Iu(?i) = fb(?L)I(A.) 

involving either 'La or 'Lb, respectively. (Eftink et al. [19] describe some empirical criteria 

for determining whether a single state is responsible for the observed steady-state anisotropy 

spectrum.) 

The assumptions underlying the spectral decomposition indicated by eqs 4 and 5 are 

quite severe and must be stated explicitly and commented upon. 

1. In their original analysis of the steady-state anisotropy spectrum of indole, Valeur and 

Weber [18] assumed that at the very reddest excitation wavelengths the steady-state 

anisotropy arose entirely from 'La, which was known to lie below 'Lb in polar solvents 

[36,37]. Their assignment, however, of roa = 0-3 still required rationalization since this value 

is less than 0.4, the theoretical limiting value of the anisotropy (eq 2). The diminished 

anisotropy has been attributed to either an angle between [igbs'^^ and '^hat was greater 
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than 0° or, which is less likely, to exceedingly rapid depolarizing motion that could occur 

even in a glass [18,19,38]. 

2. The assumption that at the reddest excitation wavelengths the steady-state anisotropy 

arises entirely from 'La implies that at these wavelengths only 'La absorbs and emits 

radiation and that it is kinetically isolated from the 'Lb state. This assignment seems 

increasingly less valid as the measured values become lower. Eftink et al. [19] have 

arbitrarily picked 0.3 as the value below which the assumption is no longer valid. 

3. The Ia(A,) and Ib(A,) excitation spectra resulting from the spectral decomposition must be 

carefully interpreted. It has been tacitly assumed that Ia(?i) and Ib(A,) represent the absorption 

spectra connecting 'La and 'Lb to the ground electronic state. But the fluorescence intensity 

is proportional to Ioe<l)F> where IQ is the excitation intensity, £ is the extinction coefficient of 

the absorbing species, and (j)? is the fluorescence quantum yield. If <j)F varies with excitation 

wavelength, the fluorescence excitation spectra cannot be identified with absorption spectra. 

Such an excitation wavelength dependence of the quantum yield has been cited for indole 

[39], We have also observed this dependence for both indole and 7-azaindole [40]. This will 

be discussed in greater detail elsewhere. 

With these caveats in mind, we tested our experimental procedure by resolving the 

fluorescence excitation anisotropy spectrum of indole in propylene glycol at -60°C into 

contributions from the 'La and 'Lb electronic transitions (Figure 2.4). For purposes of 

comparison, we have resolved the excitation anisotropy spectrum by means of eqs 3-5 and 

have assumed that for 7-azaindole Our result is in excellent agreement with 

those of Valeur and Weber [18], except that our spectrum is blue-shifted by 2 nm with 

respect to theirs. We find anisotropy minima at 280.5 and 287.5 nm and a local maximum at 

284.0 nm. 

Figures 2.5-2.8 present the fluorescence excitation and emission spectra, and the 

fluorescence excitation anisotropy spectra for 7-azaindoIe and its derivatives. Resolved 'Lg 

and 'Lb spectra are presented for 7-azaindole (Figure 2.5). Substitution of a nitrogen for a 

carbon at the 7 position of indole produces a significant change in the anisotropy and the 

resolved 'La and 'Lb excitation spectra with respect to those observed for indole. The 

presence of the 'L^ and 'Lb bands in 7-azaindole had been suggested by the measurements of 
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Figure 2.4. (a) The fluorescence excitation anisotropy of indole (A,em = 350 nm). The 

emission anisotropy (X,ex = 286 nm) was flat across the wavelength region studied and agreed 

with previous reports [18,19]. (b) The excitation spectrum of indole resolved into 

contributions from the ^La and ^Lb bands, roa = 0.31 and rob = -0.16. The values for roa and 

rob reported here and in Figures 5-8 were determined using the methods of Valeur and Weber 

[18] and Eftink et al. [19]. This technique requires the assumption that at the reddest 

wavelengths only 'La absorbs and emits radiation. Refer to the text for further discussion of 

these calculations. 
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Figure 2.5. (a) The emission anisotropy of 7-a2:aindole (?iex = 295.5 nm). At wavelengths 

less than 330 nm and greater than 425 nm, the emission anisotropy became too noisy to 

resolve, (b) The fluorescence excitation anisotropy of 7-azaindole (A^em = 372 rmi). ro = 

0.19 at A-ex = 305 nm; Tq = 0.14 at = 285 nm. (c) The excitation spectrum of 7-azaindole 

resolved into contributions from the 'La and 'Lb bands, roa = 0.25 and rob = -0.13. 
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Figure 2.6. (a) The emission anisotropy of 7-azatryptophan (kex = 295 nm). (b) The 

fluorescence excitation anisotropy of T-azatryptophan (Xem = 362 nm). 
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Figure 2.7. (a) The emission anisotropy of 1M7AI (Xex = 295 nm). (b) The fluorescence 

excitation anisotropy of 1M7AI (Xem = 361 nm). 
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Figure 2.8. (a) The emission anisotropy of 7M7AI (Xex = 300 nm), (b) The fluorescence 

excitation anisotropy of 7M7AI (A-em = 420 nm). 
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Bulska et al. [41]. For indole, a strong 'Lb 0-0 transition is apparent at 287.5 nm, yet the 

analogous transitions at 298.0 nm for 7-azaindole and 300.5 nm for 7-azatryptophan are 

much less pronounced. Resolved excitation spectra of the methylated derivatives (not 

shown) lack the structure observed in those of 7-azaindole and 7-azatryptophan, showing 

only a slowly varying change in the proportions of the *La and 'Lb transitions. Similar to that 

of indole, the 'Lg contribution of these compounds is broad, absorbing over a much larger 

wavelength region than that of 'Lb, and is less structured than the 'Lb contribution. For 

reasons that are listed above and elaborated in detail in the Discussion, the resolution of the 

fluorescence excitation spectrum of indole, 7-eizaindole, and their derivatives can only be 

considered to be qualitative. 

Fluorescence Anisotropy Decay 

For 7-azaindole in water, the limiting anisotropy, r(0), was examined at 285 and 305 

nm. At each wavelength, the time-resolved measurement agrees closely with that determined 

via steady-state techniques (Table 2.1 and Figure 2.5a). Table 2.2 demonstrates that the 

fluorescence excitation spectra at 20° and -60°C are essentially the same for all the 

compounds considered here. The fluorescence anisotropy decay of the normal and the 

tautomer bands of 7-azaindole were measured in butanol and in methanol (Table 2.1 and 

Figure 2.9). A notable result is that in methanol at ri = 0.93 cP (-9.0°C), the parallel and 

perpendicular emission curves of the tautomer are superposable and hence the tautomer 

appears to be completely depolarized. On the other hand, the parallel and perpendicular 

emission of the normal band are distinct and may be fit to yield r(0) = 0.11 when Xgx = 285 

and r(0) = 0.21 when Agx = 305 nm. A rotational diffusion time, Tr> of 34 ps is obtained in 

both cases (Table 2.1). 

For 7-azaindole in the alcohols the limiting anisotropy, r(0), for the tautomer appears 

to be significantly less than that for the normal species: in fact, for viscosities such that T| <~ 

3 cP, r(0) for the tautomer is - 0 (Table 2.1). At higher viscosities, for example Ti = 6.96 cP, 

one begins to discern a measurable r(0), (i.e., r(0) = 0.004), for the tautomer and hence 

becomes able to resolve a rotational diffusion time that is comparable to that obtained from 

the normal band, 174 ps. This is reasonable, since a priori there is no reason why the 

rotational diffusion time of the tautomer should be different from that of the normal species. 

The power of the time-correlated single-photon counting technique, coupled with our 

method of data collection, is demonstrated by our ability to obtain consistent limiting 
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Table 2.1 

Fluorescence Anisotropy Decay of 7-Azaindole 

solvent, T(°C)^ r| (cP)*' species, Xem (nm) TF (ps)'^ r(O)'^ 

Xex = 305 

nm 

r(0)® 

Xex = 285 nm 

Tr(ps)®'f 

butanol, -9.0 6.96 normal, 320-460 358 ±6 ~ 0.10 ±0.01 191 ±9 

tautomer, > 505 254 ± 19; 1552 ±36 ~ 0.0048 174 

butanol, 20.0 2.92 normal, 320-460 241+6 — 0.10 ±0.01 82 ±13 

tautomer, > 505 210 ±7; 989 ± 19 ~ unresolved unresolved 

methanol, -9.0 0.93 normal, 320-460 211 ±6 0.21 ±0.01 0.11 ±0.02 34 ±8 

tautomer, > 505 192 ±6; 837 ± 16 ~ unresolved unresolved 

water, 2.0 1.67 entire band*^, > 320 1263± 14 0.21 ±0.01 0.11 ±0.01 41 ±6 

water, 23.5 0.92 entire band'', > 320 886 ± 15 0.20 ± 0.05 0.12 ±0.06 20 ±2 
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Temperatures are certain to witliin ± 0.5°C. 

' From reference 54. 1 cP = 1.0 x 10"^ N m"^ s. 

The normal form in alcohols and the species in water are characterized by a single-exponential fluorescence decay. The 
time-resolved emission of the tautomer band in alcohols is fit to the function K(t) = Aiexp(-t/ti) + A2exp(-t/X2), where Ai 
< 0 for the rising component of the fluorescence, whose contribution to the emission is normalized to unity and is given in 
parentheses by IAil/(IAil + IA2I). For the tautomer, the first number is the risetime; the second, the decay time. 

' The absence of a value indicates that the measurement was not performed. 
"Unresolved" indicates that the emitting species was not sufficiently polarized at time zero to obtain a meaningful result, in 
other words r(0) ~ 0. 

Where applicable, we present averages of experiments performed at both A,ex = 285 nm and Xex = 305 nm. 

This low value reflects the similar time scales of tautomerization and rotational diffusion. If the transition dipole moment 
for emission from the excited-state tautomer were different from the transition dipole moment for the absorbing species 
by approximately 50°, the r(0) for 7-azaindoIe in methanol would be reduced by a factor of 10, thus rendering its 
measurements very difficult. As appealing as it may be to invoke this explanation to explain the low values of r(0) for the 
tautomer, the data may be rationalized without it. It is sufficient to note that at all viscosities except that for butanol at -9° 
C, 6.96 cP, the rise time of the tautomer emission is at least 2.5 times longer than the rotational diffusion time (as obtained 
from the normal species). Clearly, one cannot detect polarized fluorescence if the time scale for the formation of the 
polarized species is longer than that for its depolarization. 

The majority of the 7-azaindole population in water is not capable of tautomerization [3-5], hence it is inappropriate to refer 
to it as "normal." And even though its fluorescence lifetime, quantum yield, and behavior with respect to deuterium 
substitution are tautomer-like, it is not a "tautomer." Because of these distinctions, we have referred to this species as 
"blocked" [5]. 
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Table 2.2 

Steady-State Measurements of 7-Azaindole and Related Compounds 

compound^ 

(20°C) 

nm 

(-60°C) 

nm 

(20°C) 

nm 

(-60°C) 

indole 272,287 287 330 -290'^ 

7-azaindole 290.5, 297 290.5,297 371 353 

7-azatryptophan 297.5C 287.5, 290.5'=''^ 380 361 

1M7AI 285 285 381 361 

7M7AI 291 291 440 405 

^ All compounds were dissolved in propylene glycol and diluted to a final concentration of 
10-50 tlM. 

Valeur and Weber [18] report an emission maximum of ~ 330 nm for indole at -58°C. This 
is the maximum we observe at room temperature. We observe a distinct blue-shift of the 
emission maximum as the sample is cooled. At -60°C, the emission maximum is slightly 
less than 300 nm. We are unable to obtain fluorescence spectra below 300 nm that have 
been corrected for instrument response. 

A shoulder is apparent at 298 nm in the excitation spectrum of 7-azatryptophan. 
The excitation spectra of each compound at 20°C and -60°C have similar shapes and 
maxima. When 7-azatryptophan is cooled, however, structure becomes apparent and two 
relative maxima are observed. 
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Figure 2.9. Fluorescence anisotropy decay of the normal band of 7-azaindole in methanol at 

-9°C (0.93 cP). For the normal band, r(t) = 0.10 exp(-t/36 ps), •/} = 1-43. The upper set of 
residuals refers to I||; the lower, to Ij_. For the tautomer band, no difference was observed 

between the parallel and perpendicular fluorescence intensities, and hence, a limiting 

anisotropy and a rotational diffusion time could not be resolved. The excitation wavelength 

was 285 nm. See the text and Table I for further details. Two-minute acquisition times are 

typically employed for I||(t) and Ix(t). Modeling the anisotropy as a double exponential does 

not significantly improve the fit and, in fact, produces unphysical results such as negative 

amplitudes or exceedingly long rotation times. 
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anisotropy and rotational diffusion times (Table 2.1) with parallel and perpendicular emission 

curves that differ only slightly on the rising edges and the maxima (Figures 2.9 and 2.10). 

Discussion 

Comparison of Steady-State and Time-Dependent Measurements 

From a comparison of Table 2.1 and Figure 2.5b, it can be seen that, for the excitation 

wavelengths investigated, the low limiting anisotropy, r(0), obtained in time-dependent 

measurements is the same, within experimental error, as that obtained in steady-state 

measurements, ro. Because the same results are obtained in liquid butanol, methanol, and 

water on the one hand and in propylene glycol glass on the other hand, the low limiting 

anisotropy may be attributed to nonmotional factors rather than to a rapid component of 

rotational diffusion that lies beyond the time resolution of our apparatus and that is expected 

to be viscosity dependent. 

Similarly, the limiting anisotropy extrapolated for tryptophan using data obtained on 

time scales > 5 ps is less than 0.4, is wavelength dependent, and agrees with the steady-state 

results for indole [42]. First Cross et al. [43] and then Szabo [44] demonstrated how the 

presence of two excited electronic states whose energy gap is close to kT can influence the 

short time anisotropy decay and hence give rise to apparently anomalously low r(0) values if 

the anisotropy measurement is not performed with sufficient time resolution. Subsequently, 

Fleming and coworkers [45] experimentally observed these effects in tryptophan and in the 

single-tryptophan-containing hormone and protein, melittin and Pseudomonas aeruginosa 

azurin, respectively. Subpicosecond resolution reveals r(0) = 0.4 and rapid components of 

anisotropy decay in the range of 1-4 ps. 

In the specific case where there are two closely lying excited states, 'La and 'Lb, the 

measured anisotropy decay function is a function of both wavelength and time [43]. 

' ^ k';g"{X)K"{t)+klg\X)K"it) 
(6) 
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Figure 2.10. Plots of the rotational diffusion (reorientation) time, TR, against TI/T for the 

normal band of 7-azaindole in butanol (•) and for 7-azaindole in water (0). Emission 

wavelengths are noted in Table I. The Xr data presented are averages from at least four 

measurements at a given viscosity using either an excitation wavelength of 285 or 305 nm. 

The data are fit to the relation, Xr = ct] + XQ, where c = V/kT if the diffusing species is a 

sphere. Both the butanol and the water data yield slopes such that V = 94.1 ± 3.2 A^. This 

volume is corrected in the text for an oblate ellipsoid. The intercepts are the "free rotor" 

times and are 10.6 ±3.8 and -0.2 ± 2.4 ps for butanol and water, respectively. These are in 

good agreement with the estimated free rotor time of about 1 ps. 
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where are the radiative rate constants, K^'''(t) are the population (fluorescence) decay 

laws, and are the emission line shapes, whose integrals are normalized to unity, of the 

^La and ^Lb states. Thus, when two nearby states can be reached from the ground state in an 

optical transition (or if the upper state can be thermally populated), the observed anisotropy 

decay is a superposition of the individual anisotropy decays. The form of the observed 

anisotropy decay will depend strongly on the extinction coefficient connecting the ground 

electronic state to 'La or 'Lb, which will determine K^'''(t=0), as well as on the relative 

contribution of emission from the two states that is detected at a given wavelength. 

Using the level scheme depicted in Figure 2.11, the following rate constants [46] are 

defined. 

= k'' = kR^ + kjsfR^ (7) 

Here we assume that k^^ = k^^. We also assume that the sum of the rate constants of the 

nonradiative processes depleting 'La and 'Lb, neglecting internal conversion, is the same for 

both levels: k^R^ = k^R^'- Further aspects of the kinetic analysis are described in detail 

elsewhere [42-44]. 

The steady-state anisotropy obtained in a glass, Tq, and the limiting anisotropy 

obtained at room temperature, r(0), are expected to be very similar if the 'Lb-'L^ energy gap 

and if the internal conversion rate do not change significantly with temperature, r^ can be 

determined from the approximation 

ro=°\r{t)dt (8) 
0 

that is valid as long as the nonmotional contributions to the anisotropy are very rapid 

compared to those from rotational diffusion. In a glass, where ~ this condition is easily 

satisfied. r(0) is determined by extrapolating the long-time behavior of eq 6 back to t=0. 

We assume that g\V) = g''(X,) and that only 'La is optically excited. For tryptophan, 

k^ = k'^ = 3.3 X 10^ s"' [42]. lO'^ s"' and 500 cm"' are taken for the values of KBA and the 

'Lb-'La energy gap [42,43]. For -60°C and 20°C, ro and r(0) are calculated to be 0.38 and 

0.36, respectively. 

This calculation indicates that thermal population of the 'Lb level will reduce the 

limiting anisotropy. But the limiting anisotropy is still much larger than those obtained for 7-

azaindole and its derivatives. In fact, in order to obtain r(0) = 0.20, it is necessary that for the 
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Figure 2.11. Energy level diagram for the ground electronic state and the two closely-lying 

excited electronic states, ^La and 'Lb, in 7-azaindole and indole. In the text, we assume that 

kRa = kRb. We also assume that the sum of the nonradiative rates depopulating ^La and ^Lb 

in the absence of internal conversion and thermal equilibration are the same, = k^R^'. 

kab is calculated from given values of the internal conversion rate, kba, and the ^Lb-'La 

energy gap. 
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same emission profiles, internal conversion rate, and energy gap, there is significant optical 

population of 'Lb- In other words, this requires the initital populations of the and 'Lt, 

states, Ka(0) and Kb(0) are such that K^(0):K^(0) = 2.4:1 at -60°C and K^(0):K^(0) = 2.1:1 at 

20°C. For simplicity, in these analyses we have not taken into consideration the depletion of 

the iLj, state by the production of solvated electrons [4,40]. 

These calculations lead us to conclude that the low r(0) values observed for the 

normal form of 7-azaindole in alcohols and for the fluorescent species of 7-azaindole in water 

are a result of both level kinetics and of absorption by 'Lb even at the reddest excitation 

wavelengths. We noted earlier that a standard assumption used in decomposing fluorescence 

excitation anisotropy spectra is that at the reddest excitation wavelengths only the lower of 

the two states is optically populated. This assumption may not be a good one for indole, 

where it has been asserted that ro = roa = 0.3 [18]; and it is most likely not appropriate for 7-

azaindole and its derivatives. We have, nevertheless, employed this method of analysis 

because it indicates clearly, albeit only qualitatively, the presence of the and ^Lb states. 

In discussing the low values of r(0), we have assumed that 1 and that 

(m-U/M )= 1 • A" angle between the absorption and emission moments for these 

respective transitions would, however, contribute to a lowering of r(0) (eq 2). Fleming and 

coworkers [42] have proposed a mechanism that provides such an angle. If there is vibronic 

mixing between the 'La and 'Lb states and if the rate of vibrational relaxation is much larger 

than the rates of interconversion between these two states, kba and kab, then an angle is 

introduced between the initially excited Franck-Condon vibronic state and the vibronic state 

that is detected in emission. 

Solvent Interactions with Normal, Tautomer, and "Blocked" 7-Azaindoie Species 

In alcohols, the fluorescence emission of 7-azaindole is characterized by two bands 

with distinct and widely separated maxima as well as different fluorescence lifetimes [2-5,11-

14], The redder of the two bands observed in alcohols is attributed to an excited-state 

tautomer. Consequently, the bluer of the two bands is attributed to a "normal" species. An 

intriguing characteristic of the emission of 7 azaindole in water is that only a smooth band is 

detected and the fluorescence lifetime is single exponential when emission is collected over 

the entire band over most of the pH range. Previously we suggested that the fluorescent 

species in water was predominantly "tautomer-like" because it bears some similarities with 

respect to fluorescence quantum yield and the deuterium isotope effect of its fluorescence 



www.manaraa.com

77 

lifetime with the tautomer in alcohols [2]. As mentioned in the Introduction and discussed in 

detail elsewhere [5], although a small fraction of the population in water is capable of 

tautomerization, the majority of the 7-azaindole molecules do not tautomerize [16]. We have 

referred to this solute population as "blocked" in order to distinguish it from the "normal" and 

the "tautomer" species. We have suggested that tautomerization is not possible for the 

"blocked" species because of its inability to form the appropriate geometry with the solvent, 

the idealized cyclic intermediate (Figure 2.2), during the lifetime of the excited state. Chou 

et al. [15] have commented on this phenomenon and have made the distinction between a 7-

azaindole monohydrate and a 7-azaindoIe polyhydrate, the latter being incapable of 

tautomerization. 

The blocked species possesses a short fluorescence lifetime and low quantum yield 

relative to the normal analog (1M7AI); 910 ps and 0.03 as compared with 21 ns and 0.55, 

respectively [5]. These traits, along with the deuterium isotope effect [5], render the 

photophysics of the blocked species more like that of the tautomer species. On the other 

hand, in water the emission maximum is at 386 nm instead of 510 nm, as it is for the 

tautomer analog (7M7AI) [5]. 

In the light of our recent results, we no longer consider it useful to discuss the 

"blocked" species as being "tautomer-like." We thus feel that referring to the blocked species 

as either normal or tautomer is not appropriate when all the data are taken into account since 

it shares features of both. 

The reorientation times obtained for 7-azaindole (Table 2.1 and Figure 2.10) allow us 

to compare the bulk solute-solvent interactions in different solvents. Figure 2.0 indicates that 

the normal form of 7-azaindole in butanol and the blocked species of 7-azaindoIe in water 

have, within experimental error, the same linear dependence of rotational diffusion time with 

respect to T|/T. This indicates that the bulk interactions of 7-azaindole with butanol and water 

are the same. Bauer et al. [47] have suggested the empirical relationship, Tp = cil + TQ. From 

the slopes of the data presented in Figure 2.10, the apparent volume of the rotationally 

diffusing species may be determined. If the species is a sphere, c = V/kT; and the data 

presented in Figure 2.10 yield V = 94 A^ for both butanol and water, (for other molecular 

shapes, however, a correction must be applied) [47,48]. This experimental volume is in very 

good agreement with the "theoretical volume" of 104 A^ that may be determined from a 

consideration of van der Waals increments [51]. This agreement is somewhat surprising 

since the experimental value is determined by assuming a spherical shape for the solute and 
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by completely ignoring specific solute-solvent interactions, such as those depicted in Figure 

2.2, for example. 

Conclusions 

Despite the single-exponential fluorescence decay of the nonnatural amino acid, 7-

azatryptophan, compared with the nonexponential decay of tryptophan and the significant 

spectroscopic differences between 7-azaindole and indole [2-5], these two chromophores are 

much more similar to one another than might have been expected. Not only do they share the 

same pathways of nonradiative decay in water, photoionization and intersystem crossing 

[3,4,40,49], but they also possess similar excited-state structure as is manifested by closely-

lying 'La and 'Lb states. The proximity of these two states is responsible for the wavelength 

dependence and the low value of the limiting anisotropy in steady-state and time-dependent 

measurements. Because of these effects, 7-azaindole can only be used as a probe of protein 

dynamics (in fluorescence depolarization measurements) on time scales of greater duration 

than the nonmotional depolarizing event (i.e., >~ 5 ps). Absorption anisotropy must be 

performed if motion is to be detected unambiguously on a finer time scale. 
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CHAPTER 3. 7-AZAINDOLE AND 7-AZATRYPTOPHAN DERIVATIVES AS 

OPTICAL PROBES OF BIOLOGICAL SYSTEMS: METHYLATION 

OF THE AROMATIC NITROGENS 

Introduction 

In previous chapters the role of the chromophoric Nj in the photophysical behavior of 

7-azatryptophan has been discussed. The proton on Nj is responsible for many of the 

fluorescence characteristics of 7-azatryptophan. This proton may interact with the solvent 

and undergo internal conversion to the ground state or states of solvation that favor excited-

state tautomerization [1,2]. Methylation of N1 inhibits such interactions. Methylation of N j 

and Ny of 7-azaindole and the justifications for performing these syntheses are discussed in 

Chapters 1 and 2; the synthesis and discussion of Ni-methyl-7-azatryptophan is found in 

Chapter 4. We propose here that other 7-azatryptophan derivatives may have significant 

advantages as optical probes of biological systems. Current work on these syntheses are 

outlined below. 

Syntheses 

In published syntheses, methylation at the Nj position in tryptophan has required 

"preparing the disodium salt of tryptophan in liquid ammonia and then allowing it to react 

with alkyl halides" [3], We propose an alternative method of methylation that requires little 

precaution. We have employed this procedure in the synthesis of Ni-methyl-7-azatryptophan 

and assume that it may become generally applicable in the alkyiation of aromatic nitrogens. 

Suitable methylating agents and various reaction conditions have been outlined by Epling and 

Kumar [4]. 

Proposed Methylation of 7-Azatryptophan at the Ny Position to Yield D,L-7-Methyl-7-

Azatryptophan 

In the event we should want to further study the tautomeric form of 7-azatryptophan, a 

methylated-Ny derivative should be simple to synthesize. This is expected to require four 

steps: (1) blocking the alkyl nitrogen with a protecting group such as N-r-Boc; (2) 
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methylating N7 by preparing N-?-Boc-7-methyl-7-azatryptophan-p-toluenesulfonate; (3) 

isolating N-?-Boc-7-methyl-7-azatryptophan; and (4) deprotecting the alkyl nitrogen. The 

protection and deprotection steps should be the same as those used in the synthesis of Nj-

methyl-7-azatryptophan (see Chapter 4). The preparation of 7-methyl-7-azaindole via a p-

toluenesulfonate intermediate is simple [2] and produces product in high yield, so the method 

of Robison and Robison is recommended for the methylation steps [5]. 

Synthesis of Nj-Alkyl-T-Azatryptophan Analogs 

Our previous syntheses have focused on preserving the original tryptophan-like 

configuration in the methylations of 7-azaindole and 7-azatryptophan. We now suggest that 

alkylation of the 7-azaindole Nj with an amino acid side chain would yield a chromophore 

suitable for tryptophan substitution. Two significant advantages of this new molecule are: 

(1) its overall size matches that of tryptophan, thereby eliminating any concerns about a 

protruding methyl group, as in N]-methyl-7-azatryptophan, and (2) the end product amino 

acids obtained are stereochemically pure. The compounds we are currently synthesizing are 

depicted in Figure 3.1. The synthesis of the N|-substituted-7-azaindole is a two-step 

procedure: (1) formation of the |3-lactone precursor, and (2) reaction between the P-lactone 

and 7-azaindole to form the Ni-alkylated-7-azaindole. The procedure of Arnold et al. [6] is 

followed in this synthesis and the steps are outlined below. Syntehsis of the other 

compounds is perfomed using this method, but replacing 7-azaindole with the appropriate 

indole derivative. 

Synthesis of N-t-Boc-L-Serine-^ -Lactone. 0.500 g Ph3P is dissolved in five mL 

dry THF under argon at -78°C. 390 |J,L diethylazodicarboxylate is added dropwise and the 

solution is allowed to stir for ten minutes at -78°C. N-r-Boc-serine dissolved in five mL dry 

THF is added dropwise to the mixture. After 20 minutes, the chilling bath is removed and 

the yellow slurry is stirred at room temperature for three hours. 

Formation of Nj-Alkyl-7-Azaindole. 57 mg 7-azaindole in four mL CH3CN is 

added to 100 mg N-r-Boc-L-serine-P-lactone dissolved in six mL CH3CN. This mixture is 

heated at 50°C for 12 hours. The solvent is removed in vacuo. 



www.manaraa.com

85 

"H. 

NH3+ 
CO2-

N 

. H -

r >  
N 

NH3+ 

C02-

Figure 3.1. Structures of proposed 7-azatryptophan analogs. 
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CHAPTER 4. SYNTHESIS AND PHOTOPHYSICAL ANALYSIS OF THE 

OPTICAL PROBE, Nj-METHYL-T-AZATRYPTOPHAN 

A paper submitted to J. Am. Chem. Soc. 

R. L. Rich', A. V. Smirnov', A. W. Schwabacher', and J. W. Petrich'-^ 

Abstract 

The development of a new intrinsic optical probe of protein structure and dynamics, 

Nj-methyl-T-azatryptophan, is reported. The utility of this nonnatural amino acid derivative 

lies in its single-exponential, long-lived fluorescence decay (21.7 ± 0.4 ns) and in its high 

fluorescence quantum yield (0.53 ± 0.07). Its absorption and emission maxima are red-

shifted 10 and 65 nm, respectively, from those of tryptophan. These characteristics permit its 

unambiguous detection with unprecedented discrimination against emission from multiply 

occurring native tryptophan residues. In a mixture of these two amino acids, no tryptophan 

signal is detected until the tryptophan:Ni-methyl-7-azatryptophan ratio exceeds 75:1. 

Consequently, Ni-methyl-7-azatryptophan is ideal for studying the interactions of small 

peptides containing it with large proteins. 

Introduction 

The difficulties in using tryptophan as an optical probe of protein structure and 

dynamics are well known. Tryptophan has an intrinsic nonexponential fluorescence decay 

and it occurs multiply in most proteins of interest [1-7]. Consequently, we have devoted 

considerable effort to the development and characterization of the nonnatural amino acid, 7-

azatryptophan, as an alternative optical probe [8-19], and other groups have subsequently 

begun to exploit its properties [20,21]. 7-Azatryptophan has a single exponential 

1 Graduate students. Assistant Professor, and Associate Professor, respectively; Department 
of Chemistry, Iowa State University. 

2 To whom correspondence should be addressed. 
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fluorescence decay (780 ps in water, pH 7 and 20°C) and the location of its absorption and 

emission maxima permit it to be detected unambiguously in the presence of up to ten 

tryptophan residues [8,11,16]. Furthermore, it is amenable to peptide synthesis and can be 

incorporated into bacterial protein [8,11]. These qualities are extremely useful, especially 

when short-time dynamics are of interest and when there are a limited number of tryptophans 

present. We have, however, demonstrated in a recent study of biotinylated 7-azatryptophan 

in complex with avidin that the relatively low fluorescence quantum yield of 7-azatryptophan 

(0.03 in water, pH 7) can diminish its utility when long-time dynamics are of interest [19]. 

In order to address problems where long-time dynamics are of interest and many 

tryptophan residues are present, it is necessary that the optical probe have both a long-lived 

excited state and a high fluorescence quantum yield. We had already suggested that Np 

methyl-7-azatryptophan (Figure 4.1) conformed to these requirements [19] based on our 

understanding of the photophysics of the 7-azaindole chromophore [9-19]. The most 

significant nonradiative properties of 7-azaindole (in particular, those that distinguish it from 

indole) are determined by the Nj proton and its interactions with the solvent. In alcohols 

[9,15,17,22,23] (and to a small degree in water [13,24-26]) this proton participates in an 

excited-state double-proton transfer. Internal conversion promoted by the interaction of this 

proton with the solvent has also been suggested [27]. The importance of the N] proton in the 

nonradiative process of 7-azaindole is demonstrated most vividly by the methylation of Nf. 

in water, the fluorescence lifetime and quantum yield increase from 910 ps and 0.03 to 21.0 

ns and 0.55 [13]. We anticipated that the methylated analog of 7-azatryptophan would 

possess the same characteristics [13,19]. This article demonstrates that it does and comments 

on the utility of this result. 

Materials and Methods 

Synthesis 

The preparation of N|-methyl-7-azatryptophan was performed in three steps: 

blocking the alkyl nitrogen of D,L-7-azatryptophan with a protecting group to form N-f-Boc-

D,L-7-azatryptophan, deprotonation using lithium diisopropylamide and subsequent 

methylation of the pyrrolic nitrogen with methyl mesylate to form N-r-Bcc-Ni-methyl-D,L-7-

azatryptophan, and deprotection of the alkyl nitrogen to yield the final product, Npmethyl-

D,L-7-azatryptophan. 
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Figure 4.1. Structures of (a) tryptophan, (b) 7-azatryptophan, and (c) Ni-niethyl-7-

azatryptophan. 
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Synthesis of N-t-Boc-D,L-7-azatryptophan. The method used was slightly modified 

from that of Bodansky and Bodansky [28] and has been briefly outlined in our previous work 

[11]. Triethylamine (515 |lL, 3.67 mmol, Kodak) was added to D,L-7-azatryptophan (500 

mg, 2.44 mmol, Sigma) sdrring in 1.5 mL water/1.5 mL dioxane. As 2-

butoxycarbonyloxyimino-2-phenylacetonitrile (665 mg, 2.70 mmol, BOC-ON, Aldrich) was 

added, the mixture became yellow. After stirring for one hour, all material had dissolved. 

The solution was stirred for three more hours. Four mL water and five mL ethyl acetate were 

added to the solution, and the aqueous fraction was extracted twice with five mL portions of 

ethyl acetate. The aqueous layer was acidified to pH 4 with crystalline citric acid and was 

filtered. The precipitate was washed with dilute citric acid and ethyl acetate, and dried in 

vacuo to yield N-?-Boc-D,L-7-azatryptophan (0.70 g, 94%). m.p. = 232-236 °C. 'H NMR 

(300 MHz, (CD3)2S0); 5 12.60 (s, IH,), 11.41 (s, IH), 8.21 (d, IH, 3.9 Hz), 7.98 (d, IH, 7.8 

Hz), 7.30 (s, IH), 7.08 (dd, IH, J,=7.5Hz, J2=3.3Hz), 4.18 (br, IH), 3.19-2.94 (m, 3H), 1.34 

(s,9H). CalcdforCi5H,9N304: C, 59.01, H, 6.27, N, 13.76. Found: C, 58.77, H, 6.29, N, 

13.52. MS(EISP): 305.1 [M]+ 

Methylation of N-t-Boc-D,L-7-azatryptophan. Diisopropylamine (595 jj,L, 4.23 

mmol, Sigma) was added to seven mL anhydrous THF and stirred under argon at -78°C for 

15 minutes. n-Butyl lithium (2.35 mL, 2.1 M, 4.94 mmol, Johnson Matthey Catalog Co.) in 

hexanes was added dropwise to the amine solution. This mixture was stirred at -78°C for one 

hour, then warmed to room temperature. At this time, the solution was added dropwise to a 

slurry of N-r-Boc-D,L-7-azatryptophan (500 mg, 1.64 mmol) stirring in seven mL anhydrous 

THF/1.5 mL anhydrous DMSO chilled to -78°C under an argon atmosphere. The slurry 

became yellow upon addition of the amide. This mixture was kept at -78°C for one hour, 

then allowed to warm to room temperature. The solution was again chilled to -78°C and 

methyl methanesulfonate (220 (xL, 2.60 mmol, Aldrich) [29] was added. The acetone/dry ice 

bath is removed after three hours and the solution continued to stir for 15 hours. The reaction 

was quenched with 15 mL water and extracted three times with ethyl acetate. Isolation of 

this product was as for N-f-Boc-D,L-7-azatryptophan to yield N-f-Boc-D,L-Nj-methyl-7-

azatryptophan. m.p. = 217-218 °C. ^H NMR:(300 MHz, (CD3)2SO) 6 12.67 (s, IH), 8.27 

(d, IH, 4.2 Hz), 8.01 (d, IH, 7.2 Hz), 7.34 (s, IH), 7.10 (dd, IH, J]=6.9Hz, J2=4.2Hz), 4.17 

(br, IH), 3.80 (s, 3H), 3.18-3.04 (m, 3H), 1.35 (s, 9H). Calcd for C16H21N3O4H2O: C, 

56.97; H, 6.82; N, 12.46. Found: C, 57.91; H, 6.82; N, 12.65. MS (EISP); 319.2 [M]+. 

Deprotection of N-t-Boc-D,L-Nj-methyl-7-azatryptophan. N-f-Boc-N]-methyl-7-

azatryptophan (100 mg, 0.32 mmol) was dissolved in one mL concentrated hydrochloric acid 
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and allowed to stir for one hour. The solution was then concentrated to near dryness by 

rotary evaporation. One mL water was added and the solution was again evaporated to near 

dryness. This last step was repeated, then one mL water was added to the solution and solid 

lithium hydroxide was added to neutralize the solution. The solution was then evaporated to 

dryness. After addition of two mL isopropanol to dissolve the lithium chloride, the solution 

was filtered and the remaining solids were washed repeatedly with isopropanol to yield Np 

methyl-7-azatryptophan. The NMR spectrum confirmed the absence of the N-?-Boc 

protecting group, but otherwise agreed with that obtained for N-r-Boc-D,L-Ni-methyl-7-

azatryptophan. m.p.: decomposition began at -235 °C, with sharp melting at 292 °C. 

Spectroscopic Measurements 

Fluorescence lifetimes were obtained by means of time-correlated single-photon 

counting [13,14]. Owing to the long fluorescence lifetime (Table 4.1) of N)-methyl-7-

azatryptophan, a 50-ns full-scale time window was required to characterize it properly. The 

fluorescence decays of mixtures of one Ni-methyl-7-azatryptophan to varying amounts of 

tryptophan were measured in order to determine what level of tryptophan produces an 

appreciable background signal. These measurements were performed on a 3-ns time scale in 

order to be more sensitive to onset of the tryptophyl fluorescence lifetime, especially its 

subnanosecond component (Table 4.2). The fluorescence decays of the mixtures were 

adequately fit to one or a sum of two exponentially decaying components: F(t) = Aiexp(-t/x 

l) + A2exp(-t/T2), where A| + A2 = 1.00. Two exponentials only became necessary at 

probertryptophan ratios of less than 1:75. Consequently, we made no attempt to attach 

physical significance to the lifetimes or their weights, but concentrated on the visual 

deviation of the fluorescence decays of the mixtures with respect to the probe alone and on 

the average flourescence lifetime computed from the decay parameters: <t> = A|T] + A2t2 

(Figure 4.4 and Table 4.2). The N|-methyl-7-azatryptophan concentration was 2-20 [iM for 

these experiments and the tryptophan concentration was adjusted accordingly. 

Results and Discussion 

The absorption and emission spectra of N|-methyl-7-azatryptophan and tryptophan 

are shown in Figure 4.2. Table 4.1 summarizes the steady-state and the time-resolved data. 

Because of the shift in the absorption and emission spectra of Ni-methyl-7-azatryptophan 
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Figure 4.2. Comparison of the normalized absorption (top) and emission (bottom) of (a) 

tryptophan and (b) N i-methyl-T-azatryptophan. 
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Figure 4.3. Fluorescence decay of (a) Npmethyl-T-azatryptophan in water; pH 7.0, 20°C; X 

ex = 310nm; > 455 nm, F(t) = 1.00 exp (-t/22.8ns), y} = 1.07; (b) tryptophan: pH 7.0,20° 

C; ?iex = 310nm; > 320 rnn, F(t) = 0.16 exp (-t/332ps) + 0.84 exp (-t/3.08ns), = 1.13; 

and (c) 7-azatryptophan in water: pH 7.0, 20°C; = 310nm; A-em ^ 375 nm, F(t) = 1.00 exp 

(-t/812ps), y} = 1.16. Fluorescence decay parameters of each species are listed in Table 1. 

These experiments were performed on a 3-ns time scale to emphasize the monoexponential 

fluorescence decay lifetime of Ni-methyl-7-azatryptophan. 
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Table 4.1. Summary of Photophysical Data. 

compound^ 1 . max ^abs 
(nm) 

1 max ^em 
(nm) 

£ 

(M"' cm"')'' 
<l>f A , c  Tj (ns) ^2 (ns)'' 

tryptophan 280 [35] 351 [16] 5400 [35] 0.18 [22] 0.22 + 0.01 0.62 ± 0.050 3.2 ±0.1 
[1] 

7-azatryptophan 288 [11] 397 [16] 6200 [11] 0.03 [22] 1.00 0.78 ±0.10® 
[16] 

NAC-P(7AT)N-NH2 289 397 6200g 1.00 0.83 ±0.010 — 

NAc-KACP(7AT)- 289 396 62008 0.84 ± 0.04 0.85 ±0.010 0.19 ±0.03 
NCD-NH2f 
N-r-Boc-N ] -methyl-7- 289 414 83001^ 0.47 ± 0.02 1.00 16.1 ±1.1 — 

azatryptophan 
N|-methyl-7-aza 289 409 8300h 0.53 + 0.07 1.00 21.7 ±0.4 — 

tryptophan 
SIIN(IM7AT)EKL' 289 406 8300h 0.52 ± 0.06 1.00 16.4 ±0.3 — 

^ Zwitterionic forms of all amino acids, measured at 20°C. 
^ The extinction coefficents are measured at the absorption maxima. 

Fluorescence lifetimes are fit to a double exponential of the form F(t) = AiexpC-t/ti) + A2exp(-t/t2), where A] + A2 = 1.00 
The absence of an entry indicates that the fluorescence decay was best fit to a single exponential. 

® Nonexponential fluorescence decay can be detected in 7-azatryptophan in water if emission is collected with a sufficiently 
narrow bandwidth on the blue or red edge of the spectrum [13]. 

f Experiments were perfomed under aqueous conditions in which the cysteine residues were assumed to be reduced thiols. 
SThe extinction coefficient was assumed to be equal to that of 7-azatryptophan [11]. 
h The extinction coefficient was assumed to be equal to that of Nj-methyl-7-azaindole [13]. 
' Peptide dissolved in phosphate-buffered saline containing 0.5% gelatin and 0.02% NaN3. 
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Table 4.2. Average Fluorescence Lifetime of Mixtures of N i -Methyl-7-azatryptophan and 
Tryptophan 

lM7AT;Trp <t> (ns)^ 

1:0 21.7 ±0.4 
1:50 23.810.3 
1:75 22.3 ± 0.4 

1:100 9.4 ± 1.5 
1:150 9.1+2.3 
1:175 6.6 ±1.5 
1:200 5.2 ±0.9 

^ Data are collected at pH 7 and 20°C. <t> = AjTi + A2't:2; see Materials and Methods. 
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Figure 4.4. Fluorescence decay of (top trace) Nprnethyl-T-azatryptophan, F(t) = 1.00 exp (-

t/22.8ns), = 1 07; and mixtures of Nprnethyl-T-azatryptophan and tryptophan: (middle 

trace) 1:100, F(t) = 0.35 exp (-t/83ps) + 0.65 exp (-t/12.3ns), = 1.28; and (bottom trace) 

1:200, F(t) = 0.41 exp (-t/96ps) + 0.59 exp (-t/10.4ns), y} =1.21;. pH 7.0, 20°C; = 310nm, 

A-ejn > 455 nm. No contribution from tryptophan to the fluorescence decay lifetime is 

apparent up to a 75-fold excess of tryptophan. In our work with 7-azatryptophan, we 

performed similar measurements [11] with mixtures of N-acetyl-tryptophanamide (NATA) 

because it is known to have an anomalous single exponential lifetime of 3-ns duration. This 

lifetime component consequently provides a telling contrast to the 780-ps lifetime of 7-

azatryptophan. In the measurements displayed in this Figure and reported in Table 2, 

tryptophan itself affords the more rigorous test because of the presence of its subnanosecond 

component, which is expected to stand out in starkest contrast against the 21-ns lifetime of 

the probe. The nonnatural amino acid, 5-hydroxytryptophan, has also been proposed as an 

optical probe [34]. Its fluorescence lifetime is not, however, sufficiently different from that 

of tryptophan to provide a significant contrast in mixtures [16]. 
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with respect to tryptophan, and because of the very large fluorescence quantum yield of Ni-

methyl-7-azatryptophan (0.53 ± 0.07), it is expected that its fluorescence decay can be 

uniquely detected in the prescence of many background tryptophan residues. A comparison 

of the fluorescence decays of Nj-methyl-V-azatryptophan, tryptophan, and 7-azatryptophan is 

given in Figure 4.3. To illustrate the usefulness of Ni-methyl-7-azatryptophan as an optical 

probe in an environment containing multiple tryptophans, we measured the fluorescence 

decay lifetime of a mixture of these two amino acids. The fluorescence decay profile of the 

mixture exactly overlaid that of Ni-methyl-7-azatryptophan up to a 75-fold excess of 

tryptophan, where the average fluorescence lifetime begins to become perceptibly shorter. 

The tryptophyl contribution to the fluorescence decay becomes much more apparent as the 

probe:trytophan ratio approaches 1:200 (Table 4.2, Figure 4.4). Few, if any, naturally 

occurring biological systems contain this many tryptophans; clearly, emission from our 

optical probe would be unambiguously observed when incorporated into proteins. Finally, 

the single exponential fluorescence decay of Nj-methyl-7-azatryptophan permits a simplified 

interpretation of time-resolved data. Any change in its fluorescence decay can be directly 

attributed to its environment. 

Hogue and Szabo [20] have presented a study of the aminoacyladenylate of 7-

azatryptophan in B. subtilis tryptophyl tRNA synthetase. While they seem to recognize the 

importance of the N | proton for the photophysics of 7-azatryptophan, this recognition is not 

completely brought to bear upon their interpretation of data [9,30] using this chromophore. 

Unlike the photophysics of tryptophan where blue shifts or red shifts of the fluorescence 

spectrum can only crudely be interpreted in terms of, respectively, nonpolar or polar 

continuous environments and where nonexponential decay can only be rationalized by a 

sweeping invocation of conformational heterogeneity, the delicate nature of the photophysics 

of 7-azaindole provides the possibility of gleaning much more detailed and specific 

information on the environment of the chromophore. This is because the photophysics of 7-

azaindole can only be satisfactorily explained by understanding in microscopic detail its 

interactions with its solvation environment: a continuum picture of the environment is not 

sufficient. 

Hogue and Szabo observe a 10-ns lifetime of 7-azatryptophan in its 

aminoacyladenylate complex with tRNA synthetase. This is most likely a result of the 

inability of the Nj proton to form a significant hydrogen bonding interaction with a water 

molecule or any amino acid residues. Contrary to their claim [20], however, it is not 

necessarily true that just because the 7-azaindole chromophore is located in a hydrophobic 
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pocket it will exhibit a long fluorescence lifetime. It must be noted that 7-azaindole forms 

dimers under suitable conditions and that this system was first studied by Kasha and 

coworkers in 3-methylpentane [31] because it provided a model for hydrogen bonding in 

DNA base pairs. In the course of this work, it was realized that these dimers undego excited-

state double-proton transfer. Subsequent work has revealed that in alcohols [9,15,17,22,23] 

(and to a lesser extent in water [13,24-26]) excited-state tautomerization can occur if an 

appropriate hydrogen bonding interaction is established between the solvent molecule, the Nj 

proton, and N7. Consequently, the ability of 7-azaindole to tautomerize does not necessarily 

depend on the presence of either a hydrophobic or a hydrophilic environment but rather on 

the specific nature of the available molecular species that can provide suitable hydrogen 

bonding partners. 

Table 4.1 is also very instmctive in this regard. While 7-azatryptophan and the 

tripeptide, NAc-Pro-7-azatrp-Asn-NH2, exhibit single-exponential fluorescence decay, the 

octapeptide, NAc-Lys-Ala-Cys-Pro-7-azatrp-Asn-Cys-Asp-NH2, provides a nonexponential 

fluorescence decay. Clearly, the nonexponential fluorescence decay in the octapeptide must 

be induced directly by the amino acid side chain residues or indirectly by their ability to 

reorganize water about the chromophore [25]. On the other hand, both Nj-methyl-7-

azatryptophan and the octapeptide Ser-IIe-Ile-Asn-(lM7AT)-Glu-Lys-Leu display single 

exponential fluorescence decay because of the absence of the Nj proton. 

Conclusions 

Previously we have shown that 7-azatryptophan can be uniquely detected in an 

environment of up to a 10-fold tryptophan excess. We have improved the optical selectivity 

of the probe by methylating Nj. Ni-Methyl-7-azatryptophan has numerous advantages over 

other intrinsic fluorescent probes currently in use: It has red-shifted absorption and emission 

spectra with respect to those of tryptophan and a very high fluorescence quantum yield. This 

latter feature allows for shorter data collection time and analysis of smaller or more dilute 

sample volumes. This probe is characterized by a long-lived monoexponential fluorescence 

decay that is also clearly distinguishable from that of tryptophan. In addition, this tryptophan 

derivative is amenable to incorporation into peptide sequences. These combined factors 

allow for unambiguous detection of the probe signal in biological systems where site-specific 

analyses are expected to be difficult, if not impossible, owing to an overwhelming tryptophan 
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content. The immediate and most powerful use of Ni-methyl-7-azatryptophan will be to 

incorporate it into small peptides of known biological interest and to study the interactions of 

these tagged peptides with larger proteins. 
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CHAPTER 5. INCORPORATION OF 7-AZATRYPTOPHAN INTO PEPTIDE 

SEQUENCES AND THEIR BINDING INTERACTIONS 

WITH a-CHYMOTRYPSIN 

Introduction 

The incorporation of 7-azatryptophan and its derivatives into peptides and proteins is 

the next step in validating these compounds as optical probes of biological systems. The 

continued function of the peptide or protein upon replacement of a residue with 7-

azatryptophan proves the biological viability of this nonnatural amino acid. In particular, a 

small peptide or protein containing 7-azatryptophan may be studied alone and in complex 

with a larger protein that may contain many tryptophans. 

With such an intent in mind, we have begun to analyze peptides containing 7-

azatryptophan. We have examined three- and eight-residue sequences that mimic the active 

site of potato proteinase inhibitor U, with 7-azatryptophan replacing Leu at the P] position, 

and determined the spectroscopic and a-chymotrypsin-inhibiting properties of these peptides. 

A more detailed description of each of the peptide/a-chymotrypsin project and justification 

for the specific peptide sequences chosen in this study is described later in this chapter. The 

following is some information concerning the synthesis and upkeep of the peptides we use. 

Incorporation of 7-Azatryptophan into Peptide Sequences 

Except for a tryptophan-containing octapeptide synthesized for us by Genosys 

Biotechnologies, Inc., all peptides used in our laboratory have been prepared by the Protein 

Facility, Department of Biochemistry and Biophysics, Iowa State University. The person to 

contact at the Protein Facility regarding peptide synthesis, incorporation of nonnatural amino 

acids, and subsequent enantiomeric separation by HPLC is Siquan Luo at 294-3267, email: 

sluo@iastate.edu. The peptide sequences we have had made at the Protein Facility and their 

sample numbers are listed in Table 5.1. 

The peptides are fluffly, white powders. Decomposition or contamination would be 

evident if any discoloration, waxiness, or compacting of the peptides was observed. To 

preserve the peptides, they should be kept dessicated at -60°C until use. When removing the 

mailto:sluo@iastate.edu
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Table 5.1. Peptides Provided by the Protein Facility 

sequence^ sample number date 

PLN 104 4/20/92 

L-P(7AT)Nb 85 8/13/91 

D-P(7AT)N 85 8/13/91 

KACPLNCD 117 9/11/92 

L-KACP(7AT)NCD 

D-KACP(7AT)NCD 

^ All peptides are of the form NAC-X-Y-NH2. 
D- and L-notation refers to the 7-azatryptophan enantiomers only. The other residues are all 
L-conformers. 
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samples from the freezer, allow the dessicator to warm to room temperature before opening 

vials containing peptides to prevent moisture from entering the vials. Concentrations of 

peptide solutions should be determined using the optical density, rather than the weight of the 

peptide dissolved in solution. This is particularly important for samples of disulfide-

containing peptides that contain DTT as reducing agents. Using the weight of powder to 

determine solution concentration will yield an erroneously high molarity. 

Up to now, assignment of the D- and L-enantiomers has been made by elution time by 

HPLC. It was assumed that the L-peptides in general elute prior to the D-enantiomer under 

the conditions used for purification of our peptides. This, in fact, may not hold true for all 

peptides. An alternative method of assignment may be made using selective enzymatic 

enantiomer cleavage; e.g.,, some enzymes selectively cleave peptides containing a L-amino 

acid in the Pi position. 

Studies of Enzyme Kinetics: Determinations of K,n, k^atj and Kj 

An ideal protein-protein complex of which to study interactions and dynamics is that 

of an enzyme and inhibitor. The enzyme/inhibitor system we have chosen for our studies is 

that of potato proteinase inhibitor n bound to a serine proteinase, a-chymotrypsin. Serine 

proteinases (those proteinases requiring a serine residue for function) such as trypsin, a-

chymotrypsin, and elastase perform protein digestion and are endopeptidases; that is, they 

cleave a peptide chain between non-terminal residues, thereby yielding two smaller 

fragments. a-Chymotrypsin is a globular protein consisting of three polypeptide chains, 

contains a hydrophobic pocket, and requires a bulky, nonpolar, hydrophobic residue at the ?[ 

position, but has little, if any, selectivity for the P|' position. Small molecules that mimic a 

substrate, but are unreactive, (e.g., indole) can inhibit a-chymotrypsin since these compounds 

also bind in the active site pocket. These characteristics, the abundance of data for this 

enzyme, and its availiability and inexpense make a-chymotrypsin a prime candidate for our 

studies. 

The Protein Facility has synthesized peptides that contain 7-azatryptophan at the Pj 

position, but otherwise duplicate the potato proteinase inhibitor n sequence [1], about the 

active site. Potato proteinase inhibitor n was chosen as the inhibitor of interest for several 

reasons, the most significant being teh existence of a published crystal structure of this 
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inhibitor bound to an proteinase. This modified inhibitor has been complexed with a-

chymotrypsin and active-site dynamic studies have been performed. 

Active-site Determination of a-Chymotrypsin 

The a-chymotrypsin commerically available is not 100% active. In fact, the typical 

percentage of active chymotrypsin in the lots we purchase was 55-80%. Almost exclusively, 

we used a-chymotrypsin purchased from Sigma (e.g., lot 128F8035) Type 1-S from bovine 

pancreas for these studies. Prior to each experiment, the active-site concentration of the a-

chymotrypsin stock solution to be used was determined. The techniques and calculations 

discussed below are from Schonbaum's work [2]. 

solutions. Stock solutions of a-chymotrypsin are prepared by dissolution in 0.1 M 

sodium acetate buffer pH 5.05 (acidified to pH 5.05 with acetic acid), to a final concentration 

of approximately 0.4 mM. Stock solutions of N-transcinnamoylimidazole (NTCI) are 

prepared by dissolution in acetonitrile to a concentration of approximately 0.2 M. 

Concentrations are determined spectrophotometrically using extinction coefficients. Table 

5.2 is a compilation of useful parameters of several compounds used in the binding studies. 

For use in experiments, dilute the NTCI solution to approximately four mM. The titrations 

are run using three mL buffer in cuvettes, 100 )IL a-chymotrypsin solution, and 100 )LIL 

NTCI solution. The volumes must be exact: weigh 3.00 ± 0.0! g buffer into a cuvette and 

carefully inject 100 |J.L each of enzyme and substrate. Enzyme solutions should be kept on 

ice throughout the experiment. If all solutions, except the buffer solution, are not used up 

during a set of experiments, quickly freeze the remaining solutions by immersion of the 

solution vial in liquid nitrogen and store in a -60°C freezer. The buffer solution should be 

kept refridgerated when not in use and new buffer solution should be made periodically. 

analytical conditions. Experiments were run on a Beckman DU 7400 or HP 8452A 

diode array UV/vis spectrophotometer thermostatted to maintain a temperature of 24 ± 2°C. 

The instrument was set to scan in kinetics mode at an absorption wavelength of 410 nm. 

Scan time for each active site run should be 6-8 minutes, with data collection every 2 

seconds. Stirring was maintained throughout the runs by including a cuvette stir bar in each 

cuvette. The cuvettes used for the active site determination were disposable methacrylate 4.5 

mL cuvettes from Fisher Scientific. 

experimental procedure. After specifying the data-collection parameters of the 

spectrophotometer, place a cuvette containing 3.00 mL buffer and a cuvette stir bar in the 

spectrophotometer. Begin a run and collect data for the absorbance of the buffer alone for 
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Table 5.2. Useful data of compounds used in the kinetic studies 

compound molecular weight (g/mol) e (M-l cm-') (nm) 

indole 5850 at 269 nm 

pNA 8800 

P7ATA 6200 at 288 nm 288 

NTCI 9370 335 nm 

a-chymotrypsin [2] 24800 50,000 at 280 nm 280 

PLA approx. 450 at 240 nm 

SAAPF/7NA [7] 624.5 12,700 at 316 nm 

7-azaindole 8500 
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20-30 seconds. Add 100 |J,L a-chymotrypsin solution between spectrophotometer readings 

(which are every 2 seconds) and collect data for approximately 45-60 seconds. Add 100 jxL 

NTCI solution between readings and collect data for 90-120 seconds. Remove this cuvette 

and replace it with another containing buffer only. Collect data for this buffer for 20-30 

seconds, then inject 100 |liL NTCI solution between readings. Collect data for 60-120 

seconds, then terminate the run. A typical scan is shown in Figure 5.1. Usually, three or four 

runs of this type are required to determine an average and standard deviation for the 

concentration of active sites in the a-chymotrypsin stock solution. The exchange of cuvettes 

and multiple injections between absorbance readings throughout the run requires much 

practice to obtain consistency. The calculations for the active site concentration are: 

A ]  =  A i * - B 2  

A4 = A4* - B J 

A2 = A4 + 0.969A, 

M = (A2 - A3)/279.7 

where A1.4 are described in the figure caption and M is the concentration of active sites. 

Note that these formulae are for three mL buffer and 100 |J,L injection volumes. These 

equations must be rederived if different volumes of solutions are to be used. 

Another concern with the use of a-chymotrypsin is the possible degradation of this 

enzyme over the time required for a set of experiments (12-24 hours). To discover if this 

concern was valid, we chose to run a number of active site titrations over 24 hours. Type II-S 

a-chymotrypsin was used since this experiment requires such a large quantity of enzyme and 

Type n-S is significantly less expensive than Type I-S. The solution used was approximately 

three mM and was kept at room temperature (to encourage degradation) throughout the 

experiment. The method described above for determination of active sites was used and the 

results obtained are shown in Figure 5.2. We assume that using Type II-S a-chymotrypsin 

and keeping the solution at room temperature is the worst-case scenario; during the actual 

kinetic runs I have observed that the a-chymotrypsin active-site percentage remained 

unchanged for three or four days in a buffered solution kept at 4°C. 

Verification of the Experimental Procedure by Determination of Kn, and k^at for a 

Known Enzyme/Substrate System: a-Chymotrypsin and SAAPF/7NA 

Before each set of experiments to determine an inhibition constant, a verification of 

the concentrations of the enzyme and substrate solutions and a refamiliarization with the 

required techniques was necessary. These checks were performed by measuring the and 
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Figure 5.1. Plot of a typical titration to determine the active-site concentration of a-

chymotrypsin. Linear regressions are necessary to find the value for A4*, A3, and A]*. 
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Figure 5.2. Plot of the degradation of Type H-S a-chymotrypsin over time. 
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k(.at of a-chymotrypsin and Succinyl-Ala-Ala-Pro-Phe-p-nitroanilide, SAAPFpNA. Previous 

work [3] has shown that = 43 jiM and k^at = 45 s*' for this system. I could consistently 

duplicate these results. The conditions for this experiment are outlined below. 

Solutions. a-Chymotrypsin (Sigma) was dissolved in 0.1 M sodium acetate, pH 

5.05 buffer solution (adjusted to correct pH with dilute acetic acid) and the active-site 

concentration was determined. The a-chymotrypsin stock solution was kept on ice 

throughout the binding studies. SAAPF/7NA was dissolved in DMSO. The concentration of 

this solution did not change over the course of the measurements. Contamination of the 

substrate solution by a-chymotrypsin would be obvious if the solution became yellow. This 

did not happen during these experiments; absorption spectra were taken periodically to 

ensure that the substrate solution did not decompose. A series of dilutions were made to 

ensure a range of substrate concentrations for the analyses. Concentrations were determined 

by weighing a known amount of substrate and dissolving appropriately. A rough estimate of 

the extinction coefficient of SAAPFpNAis 14,000 cm"' M"^ Using this value, the 

concentration determined spectrophotometrically agreed, within expected error, with the 

value calculated from weighing and diluting the substrate. The buffer solution for these 

experiments was 0.1 M tris-HCl, 0.02 M CaCl2, 0.005% Triton X-100 (w/v) adjusted to pH 

7.8 with 1 M HCl. 1.00 ± 0.01 mL of this buffer solution was added to a cuvette; ~ 1-5 fiM a 

-chymotrypsin solution and -1-10 mM SAAPF/?NA solution were typical concentration used 

in the reaction. 

Analytical Conditions. Experiments were run on a Beckman DU 7400 or HP 

8452A diode array UV/vis spectrophotometer thermostatted to maintain a temperature of 24 

± 2°C. The instrument was set to scan in kinetics mode at an absorption wavelength of 380 

nm. Data were collected every 0.5 seconds and the total run time for each measurement was 

eight minutes. Richard Wynn, a graduate student in M. Laskowski, Jr.'s group at Purdue who 

does similar work [4], suggested collecting absorption from 380 to 410 nm and subtracting 

the background (650-700 nm). Under the conditions I was using, the instrument lacked the 

memory to store all these paramenters. As a consequence, the background was not subtracted 

during the runs. However, the absorbance of the blank (enzyme + inhibitor) solution was 

subtracted at the beginning of each run. This appeared to be sufficient. Data points were 

collected over the time in which the absorption curve was linear. The cuvettes used for these 

experiments were disposable methacrylate 1.5 mL semi-micro cuvettes purchased from 

Fisher Scientific. Since a cuvette stir bar does not fit in these small cuvettes, stirring was 

performed briefly, but vigorously, with the injection syringe upon addition of the substrate. 
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Calculations. The program used to fit the data was ENZFITTER version 1.05, a 

non-linear regression data analysis program produced by Robin J. Leatherbarrow, Department 

of Chemistry, Imperial College of Science and Technology, London, and published and 

distributed by Biosoft in Cambridge, U.K.. The original software package is kept in our 

laboratory and has been loaded onto the c: and/or e: drive of some of our computers. To use 

this program, enter the enzfit directory (c:\enzfit), then type "ef" to begin the program. The 

inital parameters I use are: 

Robust weighting: on 

Weighting: simple 

Equation: Michaelis Menton kinetics 

Directory: c:\enzfit 

Printer: off 

Auto guess: on 

Under "File and data" menu, enter the substrate concentrations and rates as x and y 

coordinates. Note that the rates reported by the spectrophometer (dA/dt) must undergo 

conversion to be the actual reaction rates (dc/dt). The conversion is: 

dc(M)/dt(sec) = dA/dt(min) x lmin/60sec x l/el 

where = 8800 cm^' M"' and the length (1) is a pathlength of 1 cm. Also, there is an 

error in the ENZFITTER program. The results obtained upon fitting the entered data are 

reported to be and k^at- This is incorrect. The actual results reported are and Vn^g^-

To determine the k^at, divide the reported v^nax by the concentration of a-chymotrypsin in the 

reaction. 

Determination of Inhibition Constants 

Solutions. The inhibitors were dissolved in 0.1 M tris-HCl, 0.02 M CaCl2, 0.005% 

Triton X-100 (w/v) pH 7.8 buffer (adjusted to the correct pH with 1 M HCl) and the 

concentrations of the solutions were determined spectrophotometrically. Chilling the 

concentrated solutions of indole and other amino acid derivatives caused precipitation of the 

solute, so reactions were run with these inhibitors kept at room temperature. New solutions 

of these compounds were made every two days since discoloration occurred after some time. 
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A minimal volume of the peptide solution was prepared at one time, so that no peptide 

inhibitor was in solution for more than a few hours, thereby reducing the possibility of 

degradation. Since the stability of the peptides at this pH was unknown, all analyses using 

these solutions were completed within six hours. It was assumed that the solutions remained 

unchanged over this period. All reactions were run in 0.7-1.0 mL inhibitor solutions. Small ( 

|liL) volumes of enzyme and substrate were added to the inhibitor solution. Dilutions due to 

addition of reactants was accounted for in the calculations. Wynn [4] suggests an incubation 

time of "ten half-lives of the enzyme -inhibitor second-order association reaction (ti/2) = 

l/(Eo X kon)". kgn for this enzyme-inhibitor complex is 1 x 10^ M"' S"! [4] For the peptide 

studies, this required an incubation time of less than 20 seconds; all reaction mixtures were 

incubated far longer than the required minimum (0.5 - 5 min). For inhibition to occur, the 

concentration of inhibitor must approximate the inhibition constant. Peptide solutions of 

millimolar concentration required a great amount of compound, so only a few runs of various 

inhibitor concentrations were possible for the peptides since each run required about 25 mg 

peptide. The enzyme and substrate concentrations in these experiments approximated those 

used for the a-chymotrypsin/SAAPFpNA experiments discussed above. 

Analytical Conditions. Experiments were run on a Beckman DU 7400 or HP 

8452A Diode array UV/vis spectrophotomer thermostatted to maintain a temperature of 24 ± 

2 °C. Data were collected at 380 nm and were collected every 0.2 seconds. Since the 

inhibition constant of the inhibitors is about 1 mM, the concentration of total enzyme must 

also be unusually great. For these reactions, it was necessary for the enzyme concentration in 

the reaction mixture to be about 0.1 |a,M. With such a high enzyme concentration, the 

reaction proceeds very quickly. Since only the linear portion of the absorption change curve 

may be used, the total run time became very short (less than one minute). This produced a 

greater spread in the rate results; even with precise injections and consistent technique, data 

points varied significantly. This resulted in a large number of data points being eliminated 

when calculating the inhibition constants. 

Calculations. ENZFITTER was used as described previously to determine K^'. To 

determine Kj, I used the following formula: 

Kn,' = Kn^(l-H[I]/Ki) 
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A check of my techniques and calculations was performed by measuring the inhibition 

constant of native potato chymotrypsin inhibitor n in complex with a-chymotrypsin. The Kj 

reported in the literature is 2 x 10"^ M [1]; I obtained 2.3 ± 0.4 x lO-^ M. 
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CHAPTER 6. THE PHOTOPHYSICAL PROBE, 7-AZATRYPTOPHAN, IN 

SYNTHETIC PEPTIDES 

A paper published in Photochemistry and Photobiology^ 

R. L-Rich^, M. Negrerie3, J. Li^, S. Elliott4, R. W. ThornburgS, and J. W. Petrich^-^ 

Abstract 

7-azatryptophan is proposed as an alternative to tryptophan as a photophysical probe 

in the study of protein structure and dynamics. Not only are the spectral characteristics of 7-

azatryptophan easily distinguishable from those of tryptophan, but this nonnatural amino acid 

is shown to be amenable to incorporation into peptides. We present the first synthesis and 

purification of a synthetic peptide containing 7-azatryptophan, NAc-Pro-7-azatryptophan-

Asn-NH2, which is shown to be a competitive inhibitor of a-chymotrypsin. 

Introduction 

The standard optical probe of protein structure and dynamics has been tryptophan. 

The use of tryptophan, however, presents a number of problems. Among these are the 

difficulties in the interpretation of the data posed by its intrinsic nonexponential fluorescence 

decay, demonstrated by Szabo and Rayner [1] and Petrich et al. [2], and the occurrence of 

' Reprinted with permission from Photochemistry and Photobiology 1993,58, 28. Copyright 
© 1993, American Society for Photobiology. 
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muitiple-tryptophan-containing proteins. We have suggested that the nonnatural analog of 

tryptophan, 7-azatryptophan, is a promising alternative to tryptophan as a photophysical 

probe. In addition to having a single-exponential lifetime decay in water over most of the pH 

range, 7-azatryptophan has optical spectra that differ significantly from those of tryptophan 

(Figures 6.1a and 6.1b). The absorption and emission spectra of 7-azatryptophan are red-

shifted 10 nm and 70 nm, respectively, from those of tryptophan. Negrerie et al. [3,4] have 

shown that 7-azatryptophan thus has great potential as a probe of protein structure and 

dynamics, especially for investigations of protein-protein interactions in which one of the 

proteins involved may contain several tryptophans. In order, however, for 7-azatryptophan to 

be useful as a biological probe and not merely a photophysical curiosity, it must be 

demonstrated that 7-azatryptophan can be incorporated into proteins and peptides and that 

these modified systems remain functional. Here we show that 7-azatryptophan is suitable for 

use in peptide synthesis by producing an analog of the active site of the potato proteinase 

inhibitor n, which is a strong inhibitor of a-chymotrypsin; Kj = 2.3 x 10'^ M. This analog is 

NAc-Pro-7-azatryptophan-Asn-NH2 where 7-azatryptophan is substituted for Leu in the P] 

site. a-Chymotrypsin was subsequently challenged by the L and D forms of this tripeptide. 

In addition, we determined the inhibition constants for the native active-site sequence of 

potato chymotrysin inhibitor H, NAc-Pro-Leu-Asn-NH2, and a series of related compounds. 

Kowalski et al. [5] demonstrated that soybean tiypsin inhibitor (Kunitz) becomes a strong 

inhibitor against a-chymotrypsin when the P] Arg is substituted with Trp. 

Materials and Methods 

Synthesis and Purification of NAc-Pro-7-azatryptophan-Asn-NH2 Peptides 

Unless otherwise specified, reagents for peptide synthesis and amino acid analysis 

were purchased from Applied Biosystems, Inc. Other materials were reagent grade. The t-

Boc-D,L-7-azatryptophan was prepared by reacting 2-butoxycarbonyloxyimino-2-

phenylacetronitrile (Aldrich) with D,L-7-azatryptophan (Sigma). Owing to the solubility 

characteristics of 7-azatryptophan, the procedure was altered from the protocol by Itoh et al. 

[6] for tryptophan. The water layer was acidified with 5% citric acid causing a precipitate to 

form. The precipitate was determined to be r-Boc-7-azatryptophan by chemical ionization 

mass spectrometry, using ammonia as a reagent gas. The acetylated peptide, NAc-Pro-7-

azatryptophan-Asn-NH2 was synthesized using tetrabutyloxycarbonyl solid-phase peptide 
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Figure 6.1. (a) Comparison of the absorption spectra of tryptophan (Trp, ~ 280nm, s 

278 nm ~ 5550 M"' cm'^ [8]) and 7-azatrpytophan (7AT, (X^'^^max = 288 nm, s 6200 M"! cm" 

>); (b) Comparison of the fluorescence spectra of tryptophan (Trp, A,®'"niax ~ 348 nm) and 7-

azatryptophan (7AT, = 395 nm). Absorption and emission spectra are normalized to 

the same peak intensity. 
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synthesis. Most of the synthesis was carried out on an Applied Biosystems 430A Peptide 

Synthesizer starting with benzhydrylamine resin. f-Boc-D,L-7-azatryptophan is insoluble in 

methylene chloride and only slightly soluble in A^-methylpyrrolidone. Thus, the formation of 

the active ester and the addition of this residue were carried out manually. The 

diastereoisomeric peptides were separated on a Beckman high-performance liquid 

chromatography (HPLC) system with a Vydac reverse-phase CI8 semipreparative column 

(10 X 250 mm) using HPLC grade reagents (Fisher Scientific). Buffers were 0.1% 

trifluoroacetica cid (TFA) in water and 0.08% TFA in acetonitrile. The L-peptide eluted 

from the column with a retention time of 10.96 minutes in a 20 minute gradient from 0% to 

20% acetonitrile buffer. The retention time for the D-peptide was 11.75 minutes. D and L 

forms were distinguished by analogy with the elution profiles of racemic mixtures of other 

amino acids. Amino acid analysis using constant boiling hydrochloric acid (Pierce Chemical 

Company) revealed that the D and L forms contained the same amino acids in identical ratios. 

7-azatryptophan is not destroyed by acid hydrolysis as is tryptophan. Fast atom 

bombardment (FAB) mass spectrometry revealed the same peak for both fractions at 456.3. 

The peptide NAc-Pro-Leu-Asn-NH2 was synthesized by standard techniques. 

Reagents and Conditions for Kinetic and Binding Studies 

Bovine a-chymotrypsin was dissolved in 0.1 M sodium acetate buffer solution 

adjusted to pH 5.05 with dilute acetic acid, and the active-site concentration was determined 

as described by Schonbaum et al. [7]. The substrate, succinyl-Ala-Ala-Pro-Phe-p-

nitroanilide (CalBiochem), was dissolved in dimethylsulfoxide. The weak inhibitors were 

dissolved in 0.1 M tris-HCI, 0.02 M CaCl2, 0.005% Triton X-100 (w/v) buffer solution 

adjusted to pH 7.8 with dilute hydrochloric acid. Potato proteinase inhibitor n (CalBiochem) 

was dissolved in deionized water. For kinetic measurments, absorbance was monitored at 

410 nm and experiments were run at 24 ± 2°C. For all analyses the enzyme concentration in 

the reaction cell was nanomolar and the substrate concentration was in the range 0.1 Km ^ 

[S]rxn — K.M-

Results and Discussion 

We have measured the fluorescence decays of mixtures of tryptophan and 7-

azatryptophan. Only when the ratio of tryptophan to 7-azatryptophan is as great as 10:1 does 
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the tryptophyl emission become detectable (Figure 6.2). The fluorescence maximum of the 

model tripeptide containing either D- or L-7azatryptophan is 414 nm at 20°C and pH 7. Its 

fluorescence lifetime is single-exponential (870 ps). Thus, not only is the fluorescence decay 

of 7-azatryptophan in water single-exponential, but so is that of the tripeptide containing 7-

azatryptophan. In contrast, Szabo and Rayner [1] and Petrich et al. [2] determined that most 

derivatives of tryptophan except for the anomalous A^acetyl-tryptophanamide (NATA) 

exhibit fluorescence decays that can be fit only to a sum of exponentials. (NATA is a poor 

model system for the fluorescence decay of tryptophan in peptides and proteins, as even 

simple tripeptides are generally well characterized by nonexponential fluorescence decay — 

usually commensurate amplitudes of 1 and 3 ns components [2].) 

Classical kinetic studies (Table 6.1) indicate the following. 

1. Indole and 7-azaindole inhibit equally well indicating that the substitution of a nitrogen 

for a carbon in the 7 position does not affect the binding interactions. 

2. Both indole and 7-azaindoIe bind more than 10 times stronger than the zwitterionic amino 

acids. Leu and Trp. But within experimental error, Leu and Trp have identical binding 

constants with respect to a-chymotrypsin. 

3. The above results suggest that the improved inhibition afforded by substituting the Pj Leu 

with 7-azatryptophan is a result of conformational change in the peptide rather than a specific 

interaction afforded by the 7-nitrogen of the azaindole moiety. 

4. It is unlikely that the 7-azatryptophan tripeptides are being hydrolyzed on the time scale of 

the expermient as both Pro-Leu and Pro-Trp exhibit much higher Kj values. If Pro-Trp or the 

7-azatryptophan peptides were being cleaved, similar Kj values would be expected for the di-

and tripeptides. 

5. The strong inhibition provided by potato proteinase inhibitor n must be afforded by 

additional contacts from amino acids in both the N- and C-terminal directions. We are 

investigating which of these amino acids are essential for providing strong inhibition. 

6. The similar Ki values of the D- and L-7-azatryptophan tripeptides suggest a certain degree 

of flexibility of the active site of a-chymotrypsin for accomodating a tryptophyl-like reside. 
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Figure 6.2. Fluorescence decays of mixtures of 7-azatryptophan and N-

acetyltryptophanamide at 20°C and pH 6.0. (a) [7AT]/[NATA] = 1/1 and Xex = 310 nm. The 

upper curve is the emission monitored at 320 nm. The fluorescence decay, F(t), is well 

described by two exponentials, the second of which is the contribution from the tryptophyl 

moiety: F(t) = 0.95exp(-t/826 ps) + 0.05exp(-t/2482 ps); = 105. The lower curve is the 

emission monitored at 400 nm. It is well described by a single exponential: F(t) = 

exp(-t/851 ps); = 1.10. (b) For both curves, ?iex = 310 nm and Xem - 450 nm. The lower 

curve corresponds to [7AT]/[NATA] = 1/3. The fluorescence decay is single exponential, 

F(t) = exp(-t/856 ps); = 1-04. The upper curve corresponds to [7AT]/[NATA] = 1/10. F(t) 

= 0.91exp(-t/848 ps) + 0.09exp(-t/2475 ps); = 1.10. The high tryptophan concentration 

begins to become apparent and gives rise to the second component. Fitting the upper curves 

in both (a) and (b) to a single exponential yields lifetimes of 983 ps (x^ = 2.40) and 898 ps (x 

2 = 1.81), respectively. At 310 nm, the extinction coefficients of tryptophan and 7-

azatryptophan are approximately 100 and 100 M"' cm"^ respectively. For an excitation 

wavelength of 310 nm, the ratio of the integrated fluorescence intensity of 7-azatryptophan to 

tryptophan for > 450 nm is - 15. Based on these values and these excitation and 

detection parameters, a solution whose zwitterionic tryptophan to 7-azatryptophan ratio is 10-

to-1 is expected to yield only ~ 6% emission from tryptophan. This is in very good 

agreement with the results obtained from the time-resolved measurements of the upper curve 

presentd in panel (b). (NATA, instead of tryptophan, was specifically used for the time-

resolved measurements because of its anomalous single-exponential fluorescence decay. 

This facilitates the quantitative resolution of the fluorescence decays into compenents from 

indole and 7-azaindole chromophores, as the decay from zwitterionic tryptophan is 

intrinsically nonexponential). 
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Table 6.1 Inhibition of a-Chymotrypsin 

species Kt (mM) 

indole 

7-azaindole 

leucine 

L-tryptophan^ 

7-azatryptophan 

Pro-Leu 

Pro-Trp 

Nac-Pro-Leu-Asn-NH2 

NAc-Pro-L-7AT-Asn-NH2 

NAc-Pro-D-7AT-Asn-NH2 

Potato Proteinase Inhibitor II 

0.4 ± 0.2, 0.8 ± 0.2 [9] 

0.4 ±0.1, 1.3 ±0.2 [10] 

10±4 

I6±6,6±2[U] 

42± 10 

45 ±4 

22 ±7 

7 ± 3  

0.3 ± 0.2 

0.5 ±0.1 

2.3±0.4x IQ-S, 2xl0-^[l 2] 

^ Our experiments used the L form of tryptophan, Foster and Niemann [39] used the D form. 
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Conclusions 

A great value of 7-azatryptophan will be to probe the interactions of a smaller peptide 

or protein containing it with another protein that may contain several tryptophans. These 

intrinsically tagged molecules can then be studied individually or in complex with their 

target. This approach will be useful in studying complexes between a small protein or 

polypeptide containing 7-azatryptophan and a large globular protein that may contain many 

tryptophans. 
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CHAPTER 7. SMALL PEPTIDES CONTAINING THE NONNATURAL AMINO 

ACID, 7-AZATRYPTOPHAN: PROBING STRUCTURE, DYNAMICS, AND 

BIOLOGICAL ACTIVITY 

A paper in preparation for submittal to J. Phys. Chem. 

R. L. Rich', D. S. English^ R. W. Thornburg^, and J. W. Petrich'-^ 

Abstract 

7-Azatryptophan is an alternative to tryptophan as an optical probe of protein 

structure and dynamics. 7-Azatryptophan is synthetically incorporated into a tripeptide and 

an octapeptide that mimic the active site of potato chymotrypsin inhibitor II, which is known 

to be a strong inhibitor of a-chymotrypsin. Both tripeptides and octapeptides containing 7-

azatryptophan inhibit a-chymotrypsin. The model octapeptide has the sequence; NAc-Lys-

Ala-Cys-Pro-7-Azatryptophan-Asn-Cys-Asp-NH2. This is the first compound containing the 

7-azaindole chromophore to display a nonexponential fluorescence decay in water when 

fluorescence is collected over the entire emission band. 7-Azatryptophan is clearly more 

sensitive than tryptophan to the onset of whatever secondary structure or partial secondary 

structure the peptide may have assumed. This result is discussed in terms of three effects: 

(1) the solvation of the 7-azaindole chromophore itself, which promotes or impedes excited-

state tautomerization, and which we have discussed for solvation in water (J. Phys. Chem. 

1993, 97, 1770) and in alcohols {Chem. Phys. Lett. 1994, 222, 329); (2) the secondary 

structure imposed by reduction or oxidation of the thiol groups of the two cysteine residues of 

the octapeptide; (3) inhomogeneities in the secondary structure imposed by the cis to trans 

isomerization about the proline residue. It is the thesis of this article that the nonexponential 

fluorescence decay of the 7-azatryptophan octapeptide is a consequence of excited-state 

tautomerization of the 7-azaindole chromophore. This tautomerization is suggested to be 
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promoted by solvent reorganization induced by the peptide backbone or by direct interactions 

of the 7-azaindole with neighboring amino acid side chains. 

Introduction 

The standard optical probe of protein structure and dynamics has been tryptophan 

(Figure 7.1). The use of tryptophan, however, presents a number of problems. Most 

significant are the difficulties in the interpretation of the data posed by the intrinsic 

nonexponential fluorescence decay of tryptophan [1-10] and the occurrence of proteins 

containing more than one tryptophan residue (which consequently renders the origin of the 

signal derived from the multiple probes ambiguous). 

In a series of papers, we have presented the nonnatural analog of tryptophan, 7-

azatryptophan, as a promising alternative to tryptophan as a photophysical probe. In addition 

to having a single-exponential lifetime decay in water over most of the pH range, (e.g. 780 ps 

at pH 7 and 20°C), 7-azatryptophan has optical spectra that differ significantly from those of 

tryptophan [11-18]. The absorption and emission spectra of 7-azatryptophan are red shifted 

10 nm and 46 nm, respectively, from those of tryptophan. 

7-Azatryptophan thus has great potential as a probe of protein structure and dynamics, 

especially for investigations of protein-protein interactions in which one of the proteins 

involved may contain several tryptophans. A dramatic illustration of the optical selectivity 

afforded by the lifetime and the spectroscopic distinguishability of 7-azatryptophan is that in 

a mixture of tryptophan and 7-azatryptophan, only when the ratio of tryptophan to 7-

azatryptophan is as great as 10; 1 does the tryptophyl emission become detectable [11,18]; and 

even when the ratio is 40:1 the 7-azatryptophan is easily detected in the mixture. 5-

Hydroxytryptophan, which has been proposed as a useful biological probe [19], has a 

fluorescence lifetime comparable to that of tryptophan (3.8 ns) and consequently cannot 

provide the same degree of optical selectivity [18]. 

Kasha and coworkers were the first to realize that dimers of 7-azaindoIe can undergo 

excited-state tautomerization [20]. It was subsequently observed [21-23] that alcohols can 

provide a state of solvation that predominates at room temperature [15] in which such a 

double proton transfer is possible with the monomer. In water, on the other hand, we [13] 

and Kasha and coworkers [24] have provided evidence that such a state of solvation is 

largely prohibited. Nevertheless, in water at room temperature, the fluorescence lifetimes of 
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tryptophan 7-azatryptophan 

CH. 
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1 -methyl-7-azatryptophan 

tripeptide; 

NAc-Pro-ZAT-Asn-NHg 
Ps Pi p; 

octapeptide: 

NAc-Lys-Ala-Cys-Pro-TAT-Asn-Cys-Asp-NHg 
Pb P. PS Pa Pt P; Pa P3 

Figure 7.1. Structures of tryptophan, 7-azatryptophan, l-methyl-7-azatryptophan, and 

sequences of the peptides studied. The sequences are labelled according to the notation of 

Berger and Schechter [41] for substrates of proteinases. 
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7-azaindole and 7-azatryptophan are relatively short-lived (~ 900 and 780 ps, respectively), 

owing most likely to internal conversion [13,24,25] facilited by the Nj-H stretch or to 

dissociation of the bond itself. The 7-azaindole chromophore is thus remarkably sensitive to 

its state of solvation. The Nj-H interacts strongly with the solvent and the chromophore is 

poised to undergo an excited-state double proton transfer. The nonradiative pathways 

permitted by the Nj-H group are very effectively shut down by methylation of the 1-nitrogen 

[13,20]. l-Methyl-7-azaindole has a fluorescence lifetime of 21 ns and a fluorescence 

quantum yield of 0.55 in water at 20°C [13,20]. This suggests that l-methyl-7-azatryptophan 

(Figure 7.1) will have a similarly long-lived fluorescence decay and hence be an excellent 

probe of events transpiring on a more extended time scale [17] (see Conclusions). 

We have proposed that the "well-behaved" fluorescence properties of 7-azatryptophan 

are a result of the interactions of the 1-nitrogen with the solvent [13] and the relatively low 

energy of its fluorescent state with respect to that of tryptophan [18]. 

In order for 7-azatryptophan to be useful as a biological probe and not merely a 

photophysical curiosity, it is required that 7-azatryptophan be amenable to incorporation into 

proteins and peptides and that these modified systems remain functional [11]. We have 

begun studies of a number of protein systems. For example, we have synthesized 5'-

phosphopyridoxyl-7-azatryptophan [16] for use as a probe of tryptophanase, tryptophan 

synthase, and other enzymes requiring a vitamin derivative as a coenzyme. We have 

demonstrated that biotinylated 7-azatryptophan retains a high binding constant with respect to 

avidin and can usefully probe local motion (rapid restricted motion) with respect to overall 

tumbling of avidin — even in the presence of excess tryptophan residues [17]. Finally, the 

suitability of 7-azatryptophan for use in peptide synthesis was demonstrated by producing a 

tripeptide analog of the active site of the potato chymotrypsin inhibitor n (a degradation 

product of potato proteinase inhibitor II), which is a strong inhibitor of a-chymotrypsin: Ki 
Q 

~2 x 10" M [14]. The sequence of this tripeptide is NAc-Pro-7-Azatryptophan-Asn-NH2, 

where 7-azatryptophan is substituted for Leu, which occurs in the native protein. 

In this article we report the synthesis of a 7-azatryptophan-containing octapeptide that 

mimics the active site of the potato chymotrypsin inhibitor II; NAc-Lys-Ala-Cys-Pro-7-

Azatryptophan-Asn-Cys-Asp-NH2. Both tripeptides and octapeptides containing 7-

azatryptophan inhibit a-chymotrypsin. Unlike the tripeptide, the octapeptide displays a 

nonexponential fluorescence decay (Table 7.1). In fact, the octapeptide is the first compound 

containing the 7-azaindole chromophore reported to display a nonexponential fluorescence 

decay in water when fluorescence is collected over the entire emission band. This result is 
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Table 7.1 Summary of Fluorescence and Anisotropy Decay Parameters 

species (A.max®'") x\ (ps) '^2 (ps) Ai Tr (ps)'' ^ex'^em 

(nm) 

7-azaindole 886 ± 15 — 1.00 20 ± 2^' 305, > 320 

(386 nm) [13] 

7-azaindole/MeOH, 730 147^= 0.10 34±8S[12] 285,> 320 

(364, 505 nm) [36] 

7-azatryptophan 780 ± 10 — 1.00 50 ±3 305,> 320 

(397 nm)[13,18] 

7-azatryptophan 350 150 ±8^1 0.10 57 ±8 305,320-

(MeOH, 382 nm) 460 

[18] 

tripeptide (397 nm) 833 ±2 — 1.00 103 ± 13 310, >345 

reduced octapeptide 845 ±9 189±31 0.84 ± 0.04 312± 17 290,> 335 

(396 nm) 

reduced octapeptide 846 ± 35 278 ± 82 0.80 ±0.04 426 ±103 305,> 320 

(TCEP, 460 nm) 

alkylated 931 232 0.72 465 285, >335 

octapeptide 

(398 nm) 

oxidized 874 ± 11 216 ±30 0.82 ±0.02 297 ± 48 290, > 335 

octapeptide 

(389 nm) 

tryptophan [1] 3210±120 620 ± 50 0.78 ±0.01 33.2 ± 5.5[40] 295,> 320 

Arg-Trp-Gly° [6] 1910 ±20 730 ± 70 0.78 ±0.01 140 ±20 295,> 335 

reduced tryptophan 1928+ 198 281 ±33 0.53 ± 0.04 407 ± 26 290, > 335 

octapeptide 

(350 nm) 

oxidized tryptophan 1636 ±94 274 ± 56 0.56 ± 0.04 275 290, > 335 

octapeptide 

(350 nm) 
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Table 7.1 (continued) 

^ Unless otherwise specified, the measurement is carried out in water at 20°C. Fluorescence 
lifetimes are best described by two exponentially decaying components and are fit to the 
form; K(t) = AiexpC-t/ti) + A2exp(-t/i:2). 
In all cases the fluorescence anisotropy decay is adequately described by a single 

exponentially decaying component: r(t) = r(0)exp(-t/Tr). For the oxidized 7-azatryptophan 
octapeptide, a double-exponential model does not significantly improve the fit. See Results 
and Discussion. 
The rise time for the formation of the tautomer band of 7-azaindole in methanol is 150 ps at 
room temperature [12,13]. 
When emission is collected at wavelengths greater than 505 nm, a rise time commensurate 
to this decaying component is observed, i.e., 127 ps. 

^ ACTH(8-10). 
f'23.5°C [12]. 
g-9°C [12]. 
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discussed in terms of three effects, whose importance, in order of decreasing significance is 

believed to be; 

1. The solvation of the 7-azaindole chromophore itself, which to different extents may 

promote or impede excited-state tautomerization, alluded to above, and which we have 

discussed for solvation in water [13] and in alcohols [15]. 

2. The secondary structure imposed by reduction or oxidation of the thiol groups of the 

two cysteine residues of the octapeptide. The existence of this secondary structure is 

demonstrated both by classical chemical spot tests as well as by fluorescence quenching 

experiments and rotational diffusion times obtained from fluorescence anisotropy decays. 

3. Inhomogeneities in the secondary structure imposed by the cis to trans isomerization 

about the proline residue [26,27], 

It is the thesis of this article that the nonexponential fluorescence decay of the 7-

azatryptophan octapeptide is a consequence of excited-state tautomerization of the 7-

azaindole chromophore. This tautomerization is promoted by solvent reorganization induced 

by the peptide backbone or by direct interactions of the 7-azaindole with neighboring amino 

acid side chains. 

Experimental 

Peptide Synttiesis 

Synthesis of peptides containing 7-azatryptophan was performed as described 

elsewhere [14] using an Applied Biosystems 430A Peptide Synthesizer starting with 

benzhydrylamine resin. The purity of the tripeptides and octapeptides was verified by HPLC. 

An important distinction between the octapeptide and the tripeptide, however, is that the 

octapeptide contains two cysteine residues, which provide the potential for disulfide 

formation. This eventuality is discussed and considered in the following experimental 

procedures and in the Results and Discussion sections. 

Since the octapeptide yielded a double-exponential fluorescence lifetime (see below) 

the octapeptide preparations (i.e, reduced, oxidized, and alkylated forms) were frequently 

checked for impurities or degradation by TLC using Sigma T-6770 precoated plates and 

several solvent systems: Et0H/H20, Et0Ac/H20, and BUOH/H2O/HOAC in various 

proportions. All results gave a single spot when viewed under UV light or after development 

in an I2 chamber. 
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An octapeptide containing tryptophan in the Pj position (Figure 7.1) was purchased 

from Genosys Biotechnologies, Inc. The purity of the sample was >95%. Results of time-

resolved experiments using the tryptophan octapeptide were compared with those obtained 

from the 7-azatryptophan octapeptide. 

Derivatization of the 7-Azatryptophan Octapeptide 

Several routes were employed to ensure complete reduction or oxidation of the 

cysteine thiols. Identical results were obtained for both the D- and the L-octapeptides. 

Reduction of Cysteine Residues. Two methods for reducing the disulfide linkages 

within the octapeptide were employed. Dithiothreitol (DTT) was added to solutions of the 

ocatapeptide to a final concentration of 0.05 M DTT and allowed to react for four hours 

under inert atmosphere before analysis to ensure significant reduction of the cysteine thiols. 

Alternatively, a solution of tris(2-carboxyethyl)phosphine hydrochloride (TCEP*HCi) 

[28] was prepared by dissolving 11.5 |imol in 100 (xL water. This TCEP*HC1 solution was 

added to a solution of octapeptide (0.1 |Limol) in 100 |a,L water. The reduction of disulfide 

bonds appears to be immediate since there is no change in the fluorescence lifetime data 

when the reaction mixture is monitored over several hours. 

Alkylation of Cysteine Residues. Another strategy employed to remove disulfide 

linkages was to alkylate all the cysteine residues. Disulfide linkages in the octapeptide were 

reduced using TCEP«HC1 as described above. 2-Methylaziridine (Aldrich) was added 

undiluted in a quantity representing a greater than 40-foid excess of methylaziridine to 

sulfhydryl groups [29]. The solution was evaporated to dryness using an argon stream to 

remove all excess 2-methylaziridine. The alkylated octapeptide was reconstituted in water. 

Analyses of the thiol-containing (reduced) and alkylated octapeptides were performed 

under an inert atmosphere, while the studies of the disulfide-containing (oxidized) 

octapeptides were not. The solutions of the reduced and alkylated octapeptides were 

deoxygenated with argon. The concentration of dissolved oxygen was less than 6.25 x 10"^ 

M as measured by a Hach OX-2P kit. A positive pressure of argon was maintained 

throughout the measurements. 

Oxidation of Cysteine Residues. Aqueous samples of D-octapeptide were bubbled 

under pure oxygen using needle and septa at room temperature. The sample volume was 

maintained so that the peptide concentration was ~ 10"^ M. 

The oxidation state of the thiols in the octapeptides was verified by a spot test [30]. 

The spot test depends on the ability of the thiol groups to catalyze the reaction, 2NaN3 + h 
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—> 2NaI + 3N2 (g). The presence of thiol groups is indicated by bubbling due to the 

evolution of N2 and the loss of yellow color due to the consumption of I2. This test is 

somewhat subjective and may not be sensitive enough for concentrations below 10'^ M. The 

results, however, indicate clearly the presence of -SH groups for the octapeptide under 

reducing conditions and are negative for the octapeptide under oxidizing conditions. 

Measurements of Peptide Conformation 

Peptidyl-prolyl-cis/frans-isomerase (PPIase) was obtained from Sigma. Solutions of 

2 X 10"^ M D-7-azatryptophan octapeptide were prepared in tris buffer at pH 8.0 and 

maintained at 10°C. Enough PPIase was added to the solution to obtain a 40:1 ratio of 

proline residues to enzyme. These experimental conditions are similar to those described by 

Lang et al. [26]. Time-correlated single photon counting measurements were taken before 

and after the addition of PPIase. 

In addition, samples of the D-7-azatryptophan tripeptide were dissolved in D2O and 
1 o 

submitted for natural abundance C NMR measurements. Concentrations were ~ 20 

mg/mL. In this range the spectra have been reported to be independent of concentration [43]. 

Measurements were performed in a 5-mm tube on a Unity 500 spectrometer. 9,700 

acquisitions were collected at 125 MHz with a 45° pulse. A 2.6-second recycle time was 

used between acquisitions to allow full relaxation of nuclei. NOE was suppressed by gated 

decoupling to make results suitable for quantitative analysis. The probe temperature was 

maintained at 20°C. The FID was processed using NMRl software on a Digital DEC station 

5000/200. Cisltrans ratios were determined by fitting the peaks to a lorentzian and 

integrating. Chemical shifts were calibrated to an internal standard of CS2, which was 

assigned a value of 192.5 ppm. 

Other NMR experiments were carried out in order to confirm that PPIase did not 

change the cisltrans ratio of the peptide. These were performed on a VXR 300 under similar 

conditions except that the sample was maintained at 10°C at pH 8.0. Here, the sample was 

monitored before and after addition of PPIase (1:70 ratio of enzyme to peptide). 12,000-

13,000 acquisitions were collected in order to give suitable signal-to-noise ratios for accurate 

peak integrations. 

Classical Kinetic Studies 

Kinetic and binding studies of the peptide inhibitors was performed by monitoring the 

hydrolysis of a substrate catalyzed by a-chymotrypsin. Bovine a-chymotrypsin was 
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dissolved in 0.1 M sodium acetate buffer solution adjusted to pH 5.05 with dilute acetic acid, 

and the active-site concentration was determined [31]. The substrate, succinyl-Ala-Ala-Pro-

Phe-/?-nitroanilide (CalBiochem), was dissolved in dimethylsulfoxide. The weak inhibitors 

were dissolved in 0.1 M tris-HCI, 0.02 M CaCl2, 0.005% Triton X-lOO (w/v) buffer solution 

adjusted to pH 7.8 with dilute HCl. Potato chymotrypsin inhibitor n (CalBiochem) was 

dissolved in deionized water. Concentrations of the 7-azatryptophan peptide solutions were 

determined spectrophotometrically using e288nin = 6200 cm"' M"'. Absorbance changes due 

to substrate hydrolysis were most effectively monitored at 410 nm. Experiments were run at 

24 ± 2°C. For all analyses the enzyme concentration in the reaction cell was nanomolar and 

the substrate concentration approximated 0.1 KM ̂  [S]rxn ^ 10 KM- Fresh inhibitor solutions 

were used for each kinetic run. As a check of the experimental conditions and procedure, the 

Kj of potato chymotrypsin inhibitor n was determined and the result agreed with published 

results [32], 

We measured the Kj of the octapeptide reduced with 0.05 M DTT. This 

concentration of DTT did not damage the a-chymotrypsin disulfide linkages within the time 

required for each measurement. Measurements of the Kj of the alkylated and TCEP*HC1-

reduced octapeptides were not performed, since these procedures yielded the same 

fluorescence lifetimes as the DTT-reduced species. The Kj for the 7-azatryptophan 

octapeptide under oxidizing conditions agreed within experimental error with that for the 

reduced species. 

Time-Resolved Experiments 

Fluorescence lifetimes and fluorescence anisotropy decays were obtained by means of 

time-correlated single-photon counting using the apparatus described elsewhere [13]. In 

most cases the emission wavelength was selected by cutoff filters. Standard sample 

concentrations were ~ 10"^ M. When more spectral resolution was required the samples were 

concentrated to ~ 10""^ M (OD ~ 0.7 at 290 nm for the 7-azatryptophan octapeptide) and 

emission was collected with an ISA H-IO monochromator with 2-mm slits. This provided a 

16-nm bandpass. 

Fluorescence quenching experiments were carried out by adding aliquots of I.5-M 

solutions of the respective quencher (KI or acrylamide) to a 1-mL sample (~ 10'^ M) of the 

fluorescing molecule. The reduced and oxidized samples were kept in cuvettes sealed with 

septa under argon and oxygen, respectively. The quencher was injected with a glass syringe, 

and the sample was thoroughly agitated. 
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Data were fit to one or two decaying exponentials by an iterative convolution 

procedure using an nonlinear least squares algorithm. The quality of the fit was determined 
r\ 

by visual inspection of the residuals and the % criterion [12,13], Results reported with error 

estimates are obtained from at least three and as many as seven experiments. 

Results 

Steady-State Kinetics: Determination of Inhibition Constants 

Classical kinetic studies (Table 7.2) indicate that the D- and L-peptides (Figure 7.1) 

are competitive inhibitors of a-chymotrypsin. Thus, not only do the model peptides bind to 

the target enzyme, but each binds at the active site and inhibits proteolytic activity. The 

presence of the nitrogen at the 7 position in 7-azatryptophan is shown not to introduce 

additional binding interactions by the identical Kj values for indole and 7-azaindole. Kinetic 

studies using the octapeptide containing 7-azatryptophan as an inhibitor indicate that the 

additional five amino acid residues do not improve the Kj with respect to the tripeptide 

(Table 7.2). Both the D- and L-enantiomers yield the same result within experimental error. 

Steady-State Spectra and Fluorescence Decay 

The fluorescence maximum of the model tripeptide containing D- or L-7-

azatryptophan is 397 nm at 20°C and pH 7 [33]. The fluorescence spectra of the reduced and 

the oxidized 7-azatryptophan and tryptophan octapeptides are compared in Figure 7.2. 

The fluorescence lifetime of the 7-azatryptophan tripeptide is single-exponential of 

830-ps duration. Thus, not only is the fluorescence decay of 7-azatryptophan in water single-

exponential, but so is that of the tripeptide containing 7-azatryptophan. In contrast, most 

derivatives of tryptophan except for the anomalous N-acetyl-tryptophanamide exhibit 

fluorescence decays that can be fit only to a sum of exponentials. [1,2]. 

The fluorescence lifetime of the 7-azatryptophan octapeptide is nonexponential under 

all conditions (Table 7.1 and Figure 7.3), i.e. whether the octapeptide contains D- or L-7-

azatryptophan or whether the octapeptide is reduced, oxidized, or alkylated. 

It is unlikely that an impurity is the cause of the nonexponentiality of the fluorescence 

decay of the octapeptide. One would expect a species contributing 20% to the fluorescence 

lifetime decay to be apparent in the steady-state emission spectrum. This is not the case, 
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Table 7.2 Inhibition of a-Chymotrypsin 

species ^(mM) 

indole 

7-azaindole 

leucine 

tryptophan^ 

7-azatryptophan 

Pro-Leu 

Pro-Trp 

N ac-Pro-Leu-Asn-NH2 

NAc-Pro-L-7AT-Asn-NH2 

NAc-Pro-D-7AT-Asn-NH2 

NAc-Lys-Ala-Cys-Pro-L-7AT-Asn-Cys-Asp-NH2 

NAc-Lys-Ala-Cys-Pro-D-7AT-Asn-Cys-Asp-NH2 

Potato Chymotrypsin Inhibitor n 

0.4 ±0.2, 0.8 ±0.2 [38] 

0.4 ±0.1, 1.3 ±0.2 [43] 

10 ±4 

16±6,6±2[39] 

42± 10 

45 ±4 

22 ±7 

7 ± 3  

0.3 ± 0.2 

0.5 ±0.1 

0.5 ± 0.2 

0.5 ±0.1 

2.3 ± 0.4 X 10'^ 2x10-S [32] 

^ Our experiments used the L form of tryptophan, Foster and Niemann [39] used the D form. 
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Figure 1.1. Emission spectra (a) the reduced and oxidized D-7-azatryptophan octapeptides 

and (b) the reduced and oxidized L-tryptophan octapeptides. All spectra were measured in 

water at neutral pH. In both panels the dashed curve represents the oxidized species. 
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Figure 7.3. Fluorescence lifetime decays of the reduced D-7-azatryptophan octapeptide at 20 

°C. (a) Xetn = 375 nm, K(t) = 0.19exp(-t/100 ps) + 0.68exp(-t/706 ps) + 0.13exp(-t/1658 

ps); = 1.55. (b) Xem ^ 505 nm, K(t) = - 0.24exp(-t/151 ps) + 0.92exp(-t/656 ps) + 

0.32exp(-t/1504 ps); =1-12. The latter measurement was collected to a maximum of 2000 

counts instead of 10,000 owing to the low fluorescence intensity in this region. 
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since the reduced and alkylated octapeptide emission spectra (measured at pH 7.8) are nearly 

identical to that of 7-azatryptophan in water. 

Fluorescence Anisotropy Decay 

The fluorescence anisotropy decay of the 7-azatryptophan tripeptide and the 7-

azatryptophan octapeptide in the reduced and oxidized states were measured as a function of 

temperature. Identical results were obtained for both the D and the L forms. 

The fluorescence anisotropy decays of the 7-azatryptophan tripeptide and reduced 

octapeptide are both very well described by a single-exponential (x^ ~ 1.1-1.3) (Figure 7.4). 

On the other hand, the fit of the anisotropy decay of the 7-azatryptophan oxidized octapeptide 

to a single exponential is typically not very good (x^ ~ 2); but a double-exponential fit does 

not yield a significantly better result. 

Assuming the peptide solvent complex is spherical, plots of the anisotropy decay 

against temperature can be used to estimate a hypothetical volume [12] (see Figure 7.5 and 

caption). The volume obtained for the tripeptide is 470 ± 10 A^. The volume obtained for 

both the reduced and oxidized octapeptides is 1700 ± 200 A^. Given that the reduced and 

oxidized forms are likely to have extended and hairpin geometries, respectively, we conclude 

that the 7-azatryptophan is in both cases probing similar forms of local depolarizing motion 

that is independent of the gross conformation of the octapeptide. (Similar results have been 

observed for a series of ACTH fragments of varying lengths [6].) 

Temperature Dependence of the Fluorescence Lifetimes of the 7-Azatryptophan 
Octapeptide 

An Arrhenius plot constructed from the single exponential fluorescence lifetimes of 

the D-7-azatryptophan tripeptide yields a straight line and an activation energy of 2.9 ± 0.1 

kcal/mol, which is identical, within experimental error, to that of 7-azaindole in water [13]. 

The temperature dependence of the fluorescence lifetimes of the 7-azatryptophan octapeptide 

is, however, much more complicated. Table 7.3 summarizes the dependence of the 

fluorescence decay of the 7-azatryptophan octapeptide under reducing and oxidizing 

conditions as a function of temperature. Contrary to what is observed for tryptophan 

peptides, for example, the two fluorescence lifetime components do not show a marked 

tendency to decrease with increasing temperature. In fact, both increases and decreases in the 

lifetimes are observed with increasing temperature. We suggest that this complicated 

behavior is indicative of the presence of several thermally acti\'ated processes: local 
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Figure 7.4. Fluorescence anisotropy decay of 7-azatryptophan containing peptides at 20 ± 1° 

C: 

(a) the D-7-azatryptophan-tripeptide (Xgx = 310 run, A-gm ^ 345 run); K(t) = exp(-t/833 

ps), = 1-31; r(t) = 0.19exp(-t/103 ps), = 1.26; 

(b) the reduced D-7-azatryptophan-octapeptide (Xgx = 310 run, A-em ^ 345 nm); K(t) = 

0.22exp(-t/184 ps) + 0.78exp(-t/833 ps), = 1.35; r(t) = 0.13exp(-t/312 ps), = 1-10. In 

both cases, the upper set of residuals corresponds to fluorescence polarized parallel to the 
excitation beam (I |); the lower set, to fluorescence polarized perpendicular to the excitation 

beam (Ij_). 
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Figure 7.5. Plots of the rotational diffusion (reorientation) time, Xp against ti/T for the D-7-

azatryptophan tripeptide (•) and the reduced (O) and the oxidized (—) D-7-azatryptophan-

octapeptides. Identical results were obtained for the L forms. 

The Tf data presented are averages from at least three measurements at a given 

viscosity. A-ex = 310 nm and A-gm > 345nm. The samples were dissolved in tris buffer (see 

Materials and Methods), but the viscosity values used were those of water [42]. 

The data are fit to the relation, = ct) + TQ, where c = V/kT if the diffusing species is 

a sphere. The tripeptide data yield a volume of 470 ± 10 A^. The reduced and oxidized 

octapeptide data both yield a volume of 1700 ± 200 A^. 
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Table 7.3 Temperature Dependence of the Fluorescence Decay of the 7-Azatryptophan D-

Octapeptide Under Reducing and Oxidizing Conditions 

Reduced (RSH HSR) 7-Azatryptophan Octapeptide 

T(°C) T] (ps) T2 (ps) Ai 

1.5 210 ±47 1278 ±22 0.07 ±0.01 

20 191 ±9 830 ± 11 0.18 ±0.04 

30 196 ± 17 710± 11 0.18 ±0.01 

50 240 ±24 555 ±7 0.22 ± 0.03 

70 379 ±3 1219± 197 0.93 ± 0.02 

Oxidized (RS-SR) 7-Azatryptophan Octapeptide 

T(°C) Ti (ps) X2 (ps) Ai 

1.5 264 ± 43 1362 ± 17 0.17 ±0.02 

20 417 ±22 1084 ±32 0.38 ± 0.03 

30 430 ± 11 1354 ±232 0.62 ± 0.06 

45 455 ± 78 1354 ±42 0.84 ±0.01 

50 448 ± 23 2112 + 225 0.87 ± 0.03 

70 364 ±2 2251±146 0.89 ±0.01 
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solvation of 7-azaindole by both water and the peptide, peptide conformational changes 

(including most notably cis/trans isomerization — see below), and the nonradiative processes 

intrinsic to the 7-azaindole chromophore in water. 

Fluorescence Quenching as a Probe of Conformational Inhomogeneity 

In order to verify that the thiol groups of the octapeptide were either reduced and free 

or oxidized and existing as disulfide bonds, fluorescence lifetimes were measured as a 

function of concentration of a quencher. One would expect that the oxidation state of the 

thiols would subject the 7-azaindole chromophore to different local environments and that 

these different environments would render the chromophore more or less accessible to an 

external fluorescence quencher. 

Control experiments were performed with free 7-azaindole and indole. The Stern-

Volmer plots obtained using KI and acrylamide as quenchers are displayed in Figure 7.6. For 

7-azaindole, the Stern-Volmer plots are constructed for both quenchers with the average 

lifetime. This was necessary because 7-azaindole in the presence of KI or acrylamide, unlike 

indole, yields a fluorescence decay that is well described by a sum of two exponentials (Table 

7.4). We shall address this point later. 

The control experiments (Figure 7.6) indicate that indole is quenched much more 

efficiently than 7-azaindole by either KI or acrylamide. Assuming that acrylamide quenches 

by an electron tranfer process, these results are consistent with our earlier analysis for the 

absence of nonexponential fluorescence decay for 7-azatryptophan in water. Namely, 

nonexponential fluorescence decay is not observed for 7-azatryptophan, whereas it is for 

tryptophan, because excited-state 7-azatryptophan is not a good electron donor. This is a 

result of the energy of the 7-azatryptophan singlet being lower than that of tryptophan [18]. 

7-Azatryptophan Octapeptide and KI. The concentration dependence of the 

fluorescence quenching of the 7-azatryptophan octapeptide by KI is given in Table 7.5. The 

presence of KI does not significantly perturb the weight of the shorter-lived component with 

respect to that of the longer-lived component on going from reducing to oxidizing conditions. 

The data in the Table also indicate that the lifetime itself is not affected so much as the 

relative weights of the two decaying components. This suggests that a nonfluorescent (or 

weakly fluorescent) complex is formed between the 7-azaindole chromophore and KI in the 

ground state. 
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Figure 7.6. Stem-Volmer plots for the fluorescence quenching of 7-azaindole and indole 

with KI and aciylamide. Since the fluorescence lifetime for 7-a2aindole in the presence of 

quencher is nonexponential, the quantity plotted is actually the single exponential lifetime in 

the absence of the quencher divided by the average fluorescence lifetime in the prescence of 

the quencher. There is a marked difference between 7-azaindole and indole. The slopes for 

7-azaindole and indole are 6.7 M'^ and 28.0 M"', respectively, when KI is the quencher. The 

slopes for 7-azaindole and indole are 1.8 M"' and 26.0 M"', respectively, when acrylamide is 

the quencher. 
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Table 7.4 Quenching of 7-Azaindole Fluorescence^ 

KI 

[Q] (M) T, (ps) X2 (ps) A, <x> (ps) 

0 886 ± 15 — 1.00 891 

0.01 857 338 0.93 821 

0.05 805 431 0.57 644 

0.07 831 440 0.43 608 

0.10 1039 415 0.16 515 

0.20 1043 286 0.08 344 

acrylamide 

[Q] (M) Xi (ps) ^7 (ps) A, <T> (ps) 

0 886 ± 15 — 1.00 896 

0.01 878 — 1.00 878 

0.05 813 601 0.87 785 

0.07 1032 665 0.23 794 

0.20 1218 503 0.11 582 

0.50 2107 312 0.07 438 

0.90 2634 207 0.07 377 

Experiments are performed at 20°C. Data are fit to the function K(t) = A] exp(-t/T:i) + A2 

exp(-t/T2). When 7-azaindoIe was quenched with acrylamide in the range of 0.05-0.07 M, the 

results of the fits were not always reproducible; but the average lifetime was always 

conserved. The data presented here represent one run. 
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Table 7.5 Quenching by KI of the Fluorescence from the 7-Azatryptophan D-Octapeptide 

Under Reducing and Oxidizing Conditions 

Reducing (RSH HSR) Conditions 

[KI] (M) T] (ps) t:?. (ps) Ai <T> (ps) 

0 84519 189 ±31 0.84 ±0.04 732 

0.01 883 285 0.69 698 

0.03 960 331 0.51 652 

0.05 893 318 0.50 606 

0.07 808 346 0.53 591 

0.10 1033 383 0.35 611 

0.15 892 353 0.35 542 

0.20 959 294 0.32 509 

Oxidizing (RS-SR) Conditions 

[KI] (M) T] (ps) (ps) A, <T> (ps) 

0 874 ± 11 216±30  0.82 ± 0.02 756 

0.01 949 323 0.73 780 

0.03 975 396 0.64 767 

0.05 1222 447 0.43 780 

0.07 1270 441 0.39 764 

0.10 1224 396 0.40 727 

0.15 1249 401 0.32 672 

0.20 1128  388 0.28 556 
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Most importantly, the concentration dependence is qualitatively very similar to that 

for 7-azaindole itself. To the extent that the nonexponential decay of the octapeptide is due 

to all of the chromophores in an identically solvated environment that is suitable for excited-

state tautomerization (see Introduction and Conclusions) and not to conformational 

heterogeneity (which is most likely an oversimplification), it was considered most convenient 

to construct Stern-Volmer plots using the average fluorescence lifetime. Figure 7.7 compares 

the dependence of the average lifetime of 7-azaindole with that of the 7-azatryptophan 

octapeptide under reducing and oxidizing conditions, respectively. It is seen that the oxidized 

octapeptide to a small extent impedes the quenching of the 7-azaindole chromophore more 

efficiently than the reduced octapeptide. The slopes of the Stern-Volmer plots for the 

oxidized and the reduced species are 1.4 and 2.2 M"^ respecdvely. 

7-Azatryptophan Octapeptide and Acrylamide. In contrast to KI, however, 

acrylamide affects both the relative weights of the shorter- and longer-lived components as 

well as the duration of the longer-lived decay component (Figure 7.7). For example, in going 

from 0 to 0.5 M acrylamide, the weight and the lifetime of the longer-lived component 

decrease from 0.82 and 878 ps to 0.55 and 661 ps. This is suggesdve of a combination of 

different quenching mechanisms and modes of interaction between the peptide and KI and 

acrylamide. 

For reasons identical to those enumerated above, Stern-Volmer plots were constructed 

using average lifetimes. There is very little difference in the sensitivity of the average 

fluorescence lifetime of the oxidized and the reduced peptides to acrylamide, whose Stern-

Volmer plots yield slopes of 1.1 and 1.3 M"', respectively. 

Tryptophan Octapeptide. For purposes of comparison, quenching studies of the 

tryptophan octapeptide were performed. The origin of the nonexponential fluorescence decay 

in tryptophan and tryptophan-containing compounds is generally attributed to the presence of 

several conformations, in which the tryptophan has different nonradiative rates, that do not 

equilibrate rapidly during the excited-state lifetime [1,2,8,34,45-47]. Insofar as one is 

jusdfied in assigning the nonexponential fluorescence decay in tryptophan-containing 

compounds to different conformations of the chromophore with respect to a quencher (e.g., a 

charge-transfer acceptor [1,18,35]) it is reasonable to construct Stern-Volmer plots based on 

the quenching characteristics of the two lifetime components instead of the average lifetime 

as we have done above with the 7-azatryptophan peptide. 

Figures 7.8 and 7.9 present the behavior the shorter- and longer-lived lifetime 

components for the reduced and oxidized tryptophan octapeptide in the presence of KI and 
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Figure 7.7. (a) Stem-Volmer plots for the quenching of 7-azatryptophan D-octapeptide 

fluorescence with KI under both reducing and oxidizing conditions. The slopes of the Stem-

Volmer plots for the oxidized and the reduced forms are 1.4 M"' and 2.2 M'', respectively. 

(b) Stem-Volmer plots for the quenching of 7-azatryptophan D-octapeptide 

fluorescence with acrylamide under both reducing and oxidizing conditions. The slopes of 

the Stem-Volmer plots for the oxidized and the reduced forms are 1.1 M"' and 1.3 M"^ 

respectively. 

In both panels, the quenching behavior of 7-azaindole itself (Figure 6) is reproduced 

as a reference. The data presented in parts (a) and (b) represent the average fluorescence 

lifetime for reasons that are described in the text. 
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acrylamide. As with the 7-azatryptophan peptide, the difference between the oxidized and 

the reduced forms is most pronounced with KI. In contrast to the 7-azatryptophan 

octapeptide, the Stern-Volmer plots exhibit a marked levelling off at acrylamide 

concentrations of -0.1 M. Such behavior may be present for the 7-azatryptophan peptide, 

but it is not apparent until acrylamide concentrations as high as 0.7 M (Figure 7.7b). 

Possible Role of Proline Isomerization 

A factor that may contribute to the nonexponential fluorescence decay of the 7-

azatryptophan octapeptide (and possibly to the tryptophan octapeptide) is the isomerization of 

the proline residue. Proline is the only amino acid that occurs significantly in the cis 

conformation in peptides and proteins [27] (Figure 7.10). 5.7% of the Pro residues occurring 

in proteins have cis peptide bonds [27]. On the other hand, all the other residues combined 

occur in the cis conformation only 0.5% of the time. 

In the octapeptide, it is possible that a cis conformation of the Cys-Pro peptide bond 

contributes to a different state of solvation of the 7-azatryptophan residue, which in turn gives 

rise to a population of chromophores capable of undergoing excited-state tautomerization. 

Attempts to perturb the cis/trans population of the reduced octapeptide by addition of 

the enzyme peptidyl-prolyl-cw/rra«5-isomerase (PPIase) produced no measureable changes in 

the weights or the lifetimes of the fluorescence decay. This was also verified by NMR. A 

sample of tripeptide with a 70; 1 ratio of peptide to enzyme was monitored over a 24-hour 

period. There was no observable change in the cis population over this time. These results 

can be rationalized by noting that time constants of 10-100 sec are typical for cis/trans 

isomerization of X-Pro bonds in denatured proteins [27]. The PPIase will not perturb the 

relative populations if equilibrium between them is reached rapidly with respect to the time 

required to perform the optical or the NMR experiment. 

Discussion 

The 7-Azaindole Chromophore and the Solvent Environment 

In a series of articles we have discussed the role of water and alcohols in solvating 

7-azaindole in such a fashion as either to promote or to impede excited-state tautomerization 

[13,15,36,37] (see Introduction). Solvation of 7-azaindole by hydrogen-bonding molecules 
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Figure 7.8. Stem-Volmer plots for the quenching of the tryptophan octapeptide by KJ. 

(a) Quenching behavior of the shorter lived component under reducing and oxidizing 

conditions. The slopes of the Stem-Volmer plots for the reduced and the oxidized forms are 

1.2 M"' and 4.6 M"', respectively. 

(b) Quenching behavior of the longer lived component under reducing and oxidizing 

conditions. The slopes of the Stem-Volmer plots for the reduced and the oxidized forms are 

4.7 M"' and 6.8 M'', respectively. 

In both panels, the quenching behavior of indole itself (Figxire 6) is reproduced as a 

reference. 
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Figure 7.9. Stem-Volmer plots for the quenching of the tryptophan octapeptide by 

acrylamide. 

(a) Quenching behavior of the shorter lived component under reducing and oxidizing 

conditions. 

(b) Quenching behavior of the longer lived component under reducing and oxidizing 

conditions. 

In both panels, the quenching behavior of indole itself (Figure 6) is reproduced as a 

reference. 
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Figure 7.10. spectrum indicating cis and trans proline conformations for the tripeptide, 

NAc-Pro-7-Azatryptophan-Asn-NH2. The cis and tram peaks for the a, P, and 5 carbons of 

proline are labelled. Analysis of this spectrum in terms of that of Stimson et al. [44] gives a 

cis population of 19.0 ± 0.4 % for the proline residue. The octapeptide is expected to have a 

similar cis population. Use of the tripeptide, however, simplifies the spectrum and, 

consequently, its analysis. 
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(e.g., HOR) can be divided into tvi'o crude, idealized catagories. Tiie first is a "cyclic" 

complex that is believed to involve two hydrogen bonds with the same solvent molecule: 

NiH*«*OR and N7***H0R (the normal species). Nj and N7 denote the two nitrogens of 7-

azaindole (Figure 7.1). Subsequent to optical excitation, the cyclic complex facilitates the 

double proton transfer producing two different hydrogen bonds; Ni***HOR and NyH^-^OR 

(the tautomer species). The second is a state of "blocked" solvation in which 7-azaindole 

forms two hydrogen bonds, but with different solvent molecules. This blocked configuration 

is believed to impede excited-state tautomerization. 

In the context of the catagories of solvent and peptide heterogeneity discussed here, it 

is important to bear in mind that given the above description of solvation of 7-azaindole, a 

homogeneous "cyclic" state of solvation can yield a nonexponential fluorescence decay. For 

example, the fluorescence decay of 7-azaindoIe (and 7-azatryptophan) in methanol at room 

temperature that is obtained by collecting all emission wavelengths is nonexponential owing 

to the presence of tautomer that is formed by the nornial species (Table 7.1). On the other 

hand, in water at room temperature [13] or in alcohols below 0°C [15], the blocked 

configuration is more apparent in the fluorescence decay of 7-azaindole. 

In interpreting the results described above, our organizing assumption is that the 

double-exponential decay observed for the 7-azatryptophan octapeptide is a consequence of 

excited-state tautomerization that is induced by the peptide itself The outstanding question 

is then to what extent this production of chromophores susceptible to excited-state 

tautomerization is a result of direct interaction with the peptide, the ability of the peptide to 

reorganize solvent about the chromophore, or a distribution of solvation environments. 

That the octapeptide does undergo excited-state tautomerization is evident from the 

fluorescence decay profiles obtained as a function of emission wavelength (Figure 7.3). 

Emission collected on the red edge of the spectrum yields a rise time commensurate to the 

shorter-lived component observed when emission is collected either over the entire spectrum 

or at individual bluer wavelengths: 150 ps. This result demonstrates that excited-state 

tautomerization occurs in the octapeptide. What distinguishes the octapeptide from 7-

azatryptophan, 7-azaindole, and the tripeptide in water is the prominence of the shorter-lived 

decay component and the observation of nonexponential fluorescence decay even when 

emission is collected over the entire band. This implies that for the octapeptide in water the 

tautomer band and the normal band are essentially centered upon one another. 
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Photophysics of the 7-Azatryptophan Octapeptide 

There are several results in whose context the remainder of the data must be 

considered. 

1. The 7-azatryptophan octapeptide is the only compound containing 7-azaindole 

considered up to now whose fluorescence lifetime is nonexponential in pure water when 

emission is collected over the entire band. 

2. The fluorescence decays of the reduced and the oxidized octapeptide are not 

significantly different from each other (Table 7.1), but they are qualitatively similar to that of 

7-azaindole in the presence of quenchers. It is noteworthy that 7-azaindole in the presence of 

quenchers such as KI or acrylamide exhibits nonexponential fluorescence decay. This 

phenomenon is not observed with indole over the same range of concentrations. We 

tentatively attribute the nonexponential fluorescence decay of 7-azaindole induced by these 

quenching agents to a perturbation of the equilibrium solvation by water. By comparison 

with the 7-azaindole quenching experiments, we suggest that the secondary structure of the 

octapeptide either perturbs the solvent environment of the 7-azaindole chromophore and 

consequently modifies the population that is poised for excited-state tautomerization or that 

the octapeptide interacts directly with the chromophore and assumes the role of the solvent. 

3. That reducing and oxidizing conditions significantly influence the secondary structure 

of the octapeptide is demonstrated by the spot tests, by the different rotation times, and by the 

different (although relatively small) responses of the reduced and oxidized octapeptides to the 

fluorescence quenchers, KI and acrylamide. We cannot rule out additional heterogeneity 

resulting from cis/trans isomerization of the proline bond. The importance of these latter 

contributions is suggested by the complicated temperature dependence of the fluorescence 

decay of the 7-azatryptophan octapeptide. 

Biochemical Activity 

The similar Ki values for the D- and L-7-azatryptophan tripeptides suggest a certain 

degree of flexibility of the active site in a-chymotrypsin for accommodating a tryptophyl-like 

residue. 

Classical kinetic studies (Table 7.2) indicate the following; 

1. Indole and 7-azaindole inhibit equally well, suggesting that the substitution of a 

carbon for a nitrogen in the 7 position does not affect the binding interactions. 
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2. Both indole and 7-azaindole bind more than 10 times stronger than the zwitterionic 

amino acids, Leu and Trp. But within experimental error. Leu and Trp have identical 

inhibition constants with respect to a-chymotrypsin. 

3. The above results suggest that the improved inhibition afforded by substituting the Pj 

Leu with 7-azatryptophan is a result of a conformational change in the tripeptide rather than a 

specific interaction afforded by the 7-nitrogen of the azaindole moiety. 

4. It is unlikely that the 7-azatryptophan tripeptides or octapeptides are being hydrolyzed 

on the time scale of the measurements as both Pro-Leu and Pro-Trp exhibit much higher Kj 

values. If Pro-Leu-Asn or the 7-azatryptophan peptides were being cleaved, Kj values similar 

to those of the dipeptides would be expected. 

5. The similar Kj values of the D- and L-7-azatryptophan tripeptides and octapeptides 

suggest a certain degree of flexibility of the active site of a-chymotrypsin for accomodating a 

tryptophyl-like residue. 

6. The strong inhibition provided by potato chymotrypsin inhibitor II must be provided 

by additional contacts from amino acids in both the N- and C-terminal directions with respect 

to the Pj Leu or 7-azatryptophan residues. 

Conclusions 

The octapeptide containing the 7-azaindoIe chromophore discussed here is the first 7-

azaindole derivative reported to display a nonexponetial fluorescence decay in water when its 

emission is collected over the entire band. Clearly there is a structural change in going from 

the tripeptide to the octapeptide that induces the nonexponential fluorescence decay. The 7-

azaindole chromophore is furthermore sensitive to structural changes induced by subjecting 

the octapeptide to reducing or oxidizing conditions; distinct differences are apparent in both 

the steady-state and time-resolved fluorescence data for the 7-azatryptophan octapeptide 

(Figures 7.2, 7.6, and 7.7; Tables 7.1, 7.3, and 7.5). 

It is important at this point to underline the differences in the behavior of 7-

azatryptophan and tryptophan; 

1. 7-Azatryptophan is clearly more sensitive than tryptophan to the onset of whatever 

.secondary structure or partial secondary stmcture the peptide may have assumed. 

2. Neither 7-azatryptophan or tryptophan demonstrates itself to be preferable to probing 

secondary structure by means of fluorescence quenching studies. 
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3. The ability of 7-azatryptophan to probe the secondary structure imposed by the 

octapeptide must be put into perspective. It is likely that the majority of small peptides 

capable of assuming some degree of secondary structure will exhibit similar nonexponential 

fluorescence behavior, presumably from the enhancement of the population of chromophores 

capable of excited-state tautomerization. Therefore, in situations where it is already known 

that the peptide in question possesses secondary structure an alternative and possibly more 

useful optical probe is l-methyl-7-azaindole [13]: it possesses a high fluorescence quantum 

yield and a long fluorescence lifetime, 0.55 and 21 ns in water, respectively; and these 

fluorescence properties are solvent dependent [21]. Also, because its Nj nitrogen is 

methylated, it cannot undergo excited-state tautomerization. 7-Azaindole is a chromophore 

of enormous potential utility because it can be modified to probe different environments and 

different phenomena. 

A great value of 7-azatryptophan (or l-methyl-7-azatryptophan) will be to probe the 

interactions of a smaller peptide or protein containing it with another protein that may contain 

several tryptophans. These intrinsically tagged molecules can then be studied individually or 

in complex with their target. This approach will be useful in studying complexes between a 

small protein or polypeptide containing 7-azatryptophan and a large globular protein that may 

contain many tryptophans. 
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CHAPTER 8. INCORPORATION OF Nj-METHYL-T-AZATRYPTOPHAN INTO 

PEPTIDE SEQUENCES AND THIER BINDING INTERACTIONS WITH THE 

MAJOR HISTOCOMPATIBILITY COMPLEX MOLECULE H-2Kb 

A paper in preparation for submittal to the Journal of the American Chemical Society 

R. L. Rich>, A. V. Smirnovl, s. Luo2, J. W. Petrich'-^ 

Introduction 

Class I major histocompatibility complex molecules bind antigenic peptides, 

presenting these sequences to the cytotoxic T-cell receptors (TCR). "When cells are infected 

by a virus, class I molecules bind processed viral peptides and display them at the cell surface 

for recognition by cytotoxic T lymphocytes. Thus the binding of foreign peptides to class I 

molecules is the first step in the subsequent cascade of T-cell activation."[1] We have 

developed techniques to study these complexes using an intrisic fluorescent probe and time-

resolved spectroscopy. 

Currently, we are examining a variety of octapeptide sequences that simulate an 

octapeptide known to bind tightly to H-2K'', with Nj-methyl-7-azatryptophan incorporated at 

different sites in each peptide. The sequence we have chosen to mimic is SIINFEKL 

(denoted OVA-8 in previous work [1]). We have chosen a variety of site substitutions based 

on discussion with Luc Teyton at R. W. Johnson Pharmaceutical Research Institute. 

Residues 1, 4, 6, and 7 of this sequence point toward the TCR and residue 5 is an "anchor" 

residue positioned in a deep pocket of the MHC molecule binding cleft. The binding studies 

of these peptides, this class I MHC molecule, and TCR are underway in our laboratory. 

' Graduate students and Associate Professor, Department of Chemistry, Iowa State 
University. 

- Employed by the Iowa State University Protein Facility. 
^ To whom correspondence should be addressed. 
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Materials and Methods 

Determination of Binding Constants 

Membrane Preparation. The dialysis membranes used in the EMDIOIB 

Equilibrium Microvolume Dialyzer (Hoefer Scientific Instruments) require preparation prior 

to use. Place approximately four membranes in deionized water and let stand for about 30 

minutes with occassional gentle agitation. Place the membranes in 500 mL of deionized 

water containing 2% Na2C03 (2 g/lGO mL) and 1 mM EDTA (0.037 g/100 mL) at 60°C. 

Warm for 30 minutes, stirring briefly and gently periodically. After removing from the wash 

bath, rinse repeatedly with deionized water. Store membranes in deionized water containing 

0.1% NaN3 at 4°C until use. The company instructions for module preparation and use can 

be found in my notebook #7. 

Sample Preparation. A solution of empty murine class I MHC antigen 

(approximately 20 mg/mL) was provided by Luc Teyton. Peptides were synthesized and 

purified by Siquan Luo of the Iowa State University Protein Facility. Dialysis was performed 

in the buffer system recommended by Fahnestock et al. [2]: phosphate-buffered saline 

containing 0.5% gelatin and 0.02% NaN3. Concentrations of the MHC and peptide stock 

solutions was determined using the extinction coefficients: e2gonm'^'^'^'^ = 69,200 cm"' M"' 

[1] and == 8300 cm"' M"' [3]. 

Dialysis Procedure. Side A of each microdialyzer compartment is filled with 90 )lL 

(2 )iM) of H2-K'' and side B of each compartment is filled with 90 )LIL of varying 

concentrations of peptide (0.25 - 25.0 |J,M) containing Ni-methyI-7-azatryptophan. The 

mixtures are allowed to dialyze for 24 hours. After this time, this O.D. of the solutions from 

both side A and B are measured using 100 |lL spectrophotometric cuvettes. The O.D. of 

blank buffer and H-2Kb dialyzed against buffer alone are measured and subtracted from the 

other samples. In addition, each cuvette absorbs a slightly different amount of light, so the 

O.D. of each sample at 400 nm was substracted from the sample scan. The concentration of 

bound peptide is therefore: c(peptide bound) = c(side A) - c(side B) The data is plotted as 

(bound)/(free) vs. (bound) and the Kj) calculated as -(1/slope). 
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Preliminary Results 

To date, we have performed preliminary binding studies on two peptide sequences: 

SIIN(1M7AT)EKL and SIBSfE'E(lM7AT)L. Both the D- and L- enantiomers of 

SIIN(1M7AT) exhibit a ~ 5 nM. The D-enantiomer of SIINFE(1M7AT) appears to have 

a Kj) - 0.5 |LIM; studies of the L-enantiomer have not yet been performed. Time resolved 

spectroscopic experiments of these two sequences yield Xf = 16.4 ± 0.3, = ± , r(0) = for 

SIIN(1M7AT)EKL and Xf = 16.5 ± , Xr = ± , r(0) = for SIINFE(1M7AT)L. Studies of these 

and other peptides in complex with H-2K'' and H-2Kt'/TCR are continuing. 
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CHAPTER 9. USING T-AZATRYPTOPHAN TO PROBE SMALL MOLECULE-

PROTEIN INTERACTIONS ON THE PICOSECOND TIME SCALE: THE 

COMPLEX OF AVIDIN AND BIOTINYLATED 7-AZATRYPTOPHAN 

A paper published in the Journal of the American Chemical Society^ 

R. L. Rich^, F. Gai^, J. W. Lane^, J. W. Petrich2>3, and A. W. Schwabacher^'S 

Abstract 

The utility of 7-azatryptophan as an alternative to tryptophan for optically probing 

protein structure and dynamics is demonstrated by investigating the complex of egg-white 

avidin and biotinylated 7-azatryptophan. We report the synthesis of biotinylated 7-

azatryptophan and optical measurements of its complex with avidin. Although there are four 

biotin binding sites, the emission from the 7-azatryptophan tagged to biotin decays by a 

single exponential, whereas the tryptophyl emission from avidin requires two exponentials in 

order to be adequately fit. Fluorescence depolarization measurements of the complex probed 

by emission from 7-azatryptophan reveal both rapid (~ 80 ps) and much longer-lived decay. 

The former component is attributable to the local motion of the probe with respect to the 

protein; the latter component represents overall protein tumbling. In addition, energy transfer 

frorm tryptophan to 7-azatryptophan and a blue-shift in the spectrum of biotinylated 7-

azatryptophan are observed upon formation of the complex. Modified strategies of effecting 

optical selectivity are also discussed. 

' Reprinted with permission from Journal of American Chemical Society 1995, 777, 733. 
Copyright © 1995 American Chemical Society. 

- Graduate students, Associate Professor, and Assistant Professor; Department of Chemistry; 
Iowa State University. 

3 To whom correspondence should be addressed. 



www.manaraa.com

166 

Introduction 

We have proposed the nonnatural amino acid, 7-azatryptophan, as an alternative to 

tryptophan as an optical probe of protein structure and dynamics [1-12]. The merits of 7-

azatryptophan lie in its intrinsic single exponential fluorescence decay in water [1,5,10] as 

compared to the nonexponential decay exhibited by tryptophan [13-19] as well as in its 

spectroscopic distinguishability with respect to tryptophan in both absorption and emission 

[3,5,11]. Furthermore, 7-azatryptophan can be incorporated into bacterial protein and is 

amenable to peptide synthesis [1,3,12]. Important applications of 7-azatryptophan are its 

incorporation into small peptides, its binding to cofactors, and the subsequent investigation of 

the dynamics of these smaller, tagged molecules bound to the target protein of interest. In 

this article, we demonstrate the feasibility of this approach by studying biotinylated 7-

azatryptophan (inset of Figure 9.1) bound to avidin. 

Avidin is a tetrameric protein found in avian egg white. Each subunit contains 128 

residues of which 4 are tryptophan. Avidin is believed to function as an antibacterial agent 

through its ability to reduce the free concentration of biotin. The dissociation constant of the 

avidin-biotin complex is about 10"'^ M [20-27]. The essentially irreversible binding afforded 

by this complex, the specificity of its formation, and the ready modification of the 

carboxylate group of biotin have permitted the study of the interactions of several biotin 

adducts with avidin. Biotin-avidin species have found extensive use as analytical reagents 

[24,26]. Examples of other uses of biotin-avidin complexes include perturbation of rhodium 

hydrogenation catalyst activity [27], formation of ordered protein monolayers [22], and 

hybrid glycoproteins [23]. Recently, X-ray structures of egg-white avidin and its complex 

with biotin have appeared [25]. Biotin is shown to bind in a p-barrel constructed from eight 

antiparallel P sheets. The tryptophan residues 70 and 97 of one monomer and tryptophan 110 

of an adjacent monomer form part of the avidin binding site and are anchored through 

hydrogen bonds to other residues, thus stabilizing the binding site. The ureido ring of biotin 

forms hydrogen bonds with Asn-12, Ser-16, Tyr-33, Thr-35, Asn-118, and possibly Thr-77 

[25]. 

We have prepared a biotin-7-azatryptophan adduct in order to demonstrate further the 

spectroscopic distinguishability of 7-azatryptophan from tryptophan and to investigate the 

mobility of the 7-azatryptophan moiety in the complex. 
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Figure 9.1. (a) Fluorescence spectra of avidin = 339 nm) (- - -); biotinylated-7-

azatryptophan ~ 390 nm) (••••), whose structure is displayed in the inset; and the 

complex of avidin and the biotinylated 7-azatryptophan ( ). ?^ex = 310 nm. The 

excitation peak has been subtracted out of each spectrum. 

(b) Excitation spectra of biotinylated 7-azatryptophan ( ) and of biotinylated 7-

azatryptophan complexed with avidin (- - -). Samples were dissolved in a 95/5 

water/methanol mixture. X,em = 390 nm. 
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Experimental 

Synthesis of A^-a-Biotinoyl-D,L-7-Azatryptophan Methyl Ester 

Biotin A^-hydroxysuccinimide ester (100 mg, 0.302 mmol) and D,L-7-azatryptophan 

methyl ester dihydrochloride (71.2 mg, 0.245 mmol) in 3.0 mL pyridine (distilled from 

ninhydrin) were stirred under N2 for 19 hr. The pyridine was removed under vacuum at 40°C 

and the residue was suspended in approximately 30 mL of ethyl acetate and extracted three 

times with 50% saturated aqueous NaHCOs, and once with saturated NaCl. The ethyl 

acetate layer was then dried over Na2S04, decanted, and the solvent was removed to yield 90 

mg (83% yield) of product as a white solid. An analytical sample was obtained by 

recrystallization from methanol and chloroform (53 mg, 49%, m.p. = 220-222°C). 

NMR(300 MHz, CD3OD): 6 8.07 (d, 4.78 Hz, 1 H); 6 7.92 (d, 7.87 Hz, 1 H); 5 7.81 (s, IH); 

5 7.01 (dd, 4.84 Hz, 7.83 Hz, 1 H); 6 4.66 (m, 1 H); 5 4.39 (m, 1 H); 6 4.12 (m, 1 H); 5 3.59 

(s, 3 H); 5 3.09-2.97 (m, 2 H); 5 2.82 (dd, 4.89 Hz, 12.72 Hz, 1 H); 5 2.59 (d, 12.73 Hz, 1 H); 

8 2.09 (t, 6.93 Hz, 2 H); 5 1.62-1.39 (m, 6 H). IR (KBr); 1735, 1699, 1536, 1655 cm"'. 

Anal: calcd for C2iH27N504S(CHCl3)|(CH30H)i, C 46.28%, H 5.40%, N 11.73%; found, 

C 46.54%, H 5.39%, N 11.55%. 

Samples used in fluorescence studies were dissolved in a 95/5 water/methanol 

mixture. The small amount of methanol was necessary to dissolve the biotinylated 7-

azatryptophan (7ATB). No degradation of avidin was observed at this concentration of 

methanol. Affinity-purified, egg-white avidin was obtained from Sigma and used without 

further purification. Since avidin has four biotin binding sites, the complex was prepared in 

the ratio of 4 biotinylated 7-azatryptophan molecules to 1 avidin molecule. The 

concentrations of avidin and biotinylated 7-azatryptophan were determined 

spectrophotometrically using Eavidin (282 nm) = 96,000 cm"' M"' [20] and ebiotin-7-azairp (288 

nm) = 6,200 cm"' M"'. Thin-layer chromatography confirms the lack of free biotinylated 7-

azatryptophan in solutions of the complex and consequently demonstrates that attachment of 

7-azatryptophan to biotin does not affect the ability of the latter to bind to avidin. 

Spectroscopic Measurements 

Fluorescence lifetimes, K(t), and fluorescence anisotropy decays, r(t), were obtained 

using the time-correlated, single-photon counting technique [5,6]. Parallel and perpendicular 

emission intensities for measurements of anisotropy decays were collected alternately with a 

rotating analyzer polarizer in order to obviate scaling procedures [6]. Unless otherwise 
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indicated, fluorescence decays were collected to a maximum of 10,000 counts. Fluorescence 

anisotropy decays were collected so that a maximum of 16,000 counts were obtained in the 

parallel curve. Data were analyzed as usual [5,6] by an iterative comparison with the 
convolution of the instrument response function with trial functions for K(t) or for I||(t) and Ij^ 

(t), simultaneously. A nonlinear least-squares fitting procedure was employed, and the 

quality of fit was determined by the criterion. The full-scale time base for all lifetime and 

anisotropy measurements was 3 ns in order to measure accurately the rapid component of the 

anisotropy decay. Consequently, long-time depolarizing events (which are not the primary 

concern of this work) were not fully characterized. All measurements of the 4; I biotinylated-

7-azatryptophan:avidin complex were performed with Xq^ = 310 nm and ?lem > 400 nm to 

minimize the detection of emission from tryptophan residues within the protein. All other 

measurements were performed with = 285 nm and > 320 nm. The values reported 

for the time-resolved measurements are the average of three to seven measurements. 

The dependence of the fluorescence quantum yield on excitation wavelength was 

determined for indole, 5-methoxyindole, 7-azatryptophan, and the 4:1 complex of 

biotinylated 7-azatryptophan:avidin. Indole, 5-methoxyindole, and D,L-7-azatryptophan 

were purchased from Sigma Chemical Co. and used as supplied. Experiments involving 

biotinylated 7-azatryptophan were performed 95/5 water/methanol solutions; all other 

samples were dissolved in pure water. 

Absorbance measurements were made using a Shimadzu UV-2101PC double-beam 

spectrometer. Fluorescence measurements were obtained with a Spex Fluoromax fluorimeter 

whose excitation and emission bandpasses were set to 1 nm. All measurements were 

conducted at room temperature. Calibration of the absorption spectrometer and of the 

fluorimeter was performed using indole vapor as a standard. Crystals of indole in a 1-cm 

cuvette filled with argon were heated to 65°C. Comparison of the absorption and the 

excitation spectra of the vapor indicated that the position of the sharp 'Lb transition varied by 

1 nm. A correction for this discrepancy was applied throughout our calculations. 

Corrections were also applied for the wavelength-dependent response of the fluorimeter. 

The relative excitation-wavelength dependent fluorescence quantum yields were 

determined by two methods. The first method requires collecting an emission spectrum for 

each excitation wavelength and employs eq 1: 
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OD(X,i) is the optical density at the excitation wavelength, ^j; Iem(^i' v) is the emission 

intensity at the excitation wavelength and c(A,i) is a correction factor taking into account 

fluctuations of the intensity of the xenon lamp of the fluorimeter as well as other factors 

discussed above. (Alternatively, the peak height may be used instead of the integrated 

spectrum since in the systems studied here the emission profile does not change shape or 

position over the range of excitation wavelengths investigated.) 

The second method is based upon a comparison of the fluorescence excitation 

spectrum and the optical density as a function of the excitation wavelength, eq 2: 

lex(^i) is the intensity of the excitation spectrum (monitored, in our case, at the emission 

maximum) at the excitation wavelength, Xj. 

As a check of our procedures, we determined the excitation-wavelength dependence 

of the fluorescence quantum yield for rhodamine B and pyrene. The fluorescence quantum 

yield across the range of excitation wavelengths scanned remained constant within an 

experimental error of ± 15% for all the systems studied here except for that of the complex of 

biotinylated 7-azatryptophan and avidin. The excitation-wavelength dependence of the 

fluorescence quantum yield reported elsewhere is in error [36]. 

Results 

Figure 9.1 displays the fluorescence emission and excitation spectra of avidin, the 

biotin-7-azatryptophan adduct, and the complex of the biotin-7-azatryptophan adduct with 
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avidin. Figure 9.2 demonstrates that with an excitation wavelength of 310 nm, 7-

azatryptophan is detected predominantly in the complex. 

Figure 9.3 presents the fluorescence anisotropy decay of the biotinylated 7-

azatryptophan; Figure 9.4, of avidin alone. Figure 9.5 presents the fluorescence anisotropy 

decay of the complex of biotinylated 7-azatryptophan with avidin. Even in the presence of 16 

tryptophan residues, the 7-azatryptophan (1 per subunit) is detected unambiguously. The 

fluorescence anisotropy decay of the avidin-biotin complex that is detected by means of the 

7-azatryptophan chromophore is clearly different from that observed from avidin itself 

(detected by means of the tryptophyl residues). Fluorescence lifetime and anisotropy decay 

data are summarized in Table 9.1. 

The fluorescence lifetime of biotinylated 7-azatryptophan is dominated by emission 

from 7-azatryptophan and is well described by the function: K(t) = 0.98 ± 0.02 exp(-t/646 ± 

9 ps) + 0.02 ± 0.02 exp(-t/2690 ± 970 ps). The residual 2% of this fluorescence decay is 

attributed to biotin itself, which is characterized by a fluorescence lifetime with a long 

component of about 3 ns. 

The complex of avidin and biotinylated 7-azatryptophan is fit well to a double-

exponential fluorescence decay. The dominant component is again attributed to 7-

azatryptophan and has an apparent time constant of 420 ps. Because we have chosen a 3-ns 

full-scale time base to investigate the rapid dynamics, we consequently have not made a vety 

precise determination of either the magnitude or the duration of the longer-lived component, 

which arises mostly from tryptophan itself but contains a small contribution from biotin. 

Fitting the data collected on a full scale of 3 ns indicates that about 50% of the emission 

collected arises from 7-azatryptophan. 

It is important to note that detection of such a relatively small contribution of 7-

azatryptophan emission in the complex is unexpected given the respective optical properties 

of 7-azatryptophan and tryptophan. The contribution of fluorescence detected from a 

particular chromophore as a function of time, C(t), depends on several factors: the optical 

density at the excitation wavelength, the radiative rate, the fraction of the emission spectrum 

over which the fluorescence lifetime is measured, and the fluorescence lifetime of the 

chromophore itself. The expression used for determining the contribution of fluorescence 

observed from 7-azatryptophan in the presence of four tryptophyl residues (a model system 

for avidin) when the excitation wavelength is 310 nm and when fluorescence is collected at 

wavelengths longer than 400 nm is: 
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Figure 9.2. Fluorescence spectra of the complex of avidin and biotinylated 7-azatryptophan 

(1 per binding site) as a function of excitation wavelength. Note that at Xgx = 310 nm 

essentially only emission from 7-azatryptophan is observed whereas at bluer excitation 

wavelengths the contribution from tryptophan in avidin is more pronounced. For A-ex = 310 

nm, the excitation peak has been subtracted out of the spectrum. 
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Figure 9.3. Parallel and perpendicular fluorescence intensity profiles from which the 

anisotropy decay is calculated [6] for biotinylated 7-azatryptophan: A,ex = 285 nm, A-em > 335 

run, 20°C. The fluorescence anisotropy decay was fit to a single exponential: r(t) = 0.06 

exp(-t/110 ps), % = 1.62. Displayed above the polarized fluorescence profiles are the 

residuals for the parallel and the perpendicular emission, respectively. The fluorescence 

lifetime of this compound was fit to the function: K(t) = 0.98 exp(-t/642 ps) + 0.02 exp(-

t/2484 ps), X = 1.50. The residual contribution of long-lived component is due to biotin 

itself, which is weakly fluorescent. Biotin has an average fluorescence lifetime of 1.5 ns (and 

a long-lived component of about 3 ns) in a 95/5 water/methanol mixture. The values of the 

limiting anisotropics, r(0), reported here and in Figures 4 and 5 are consistent with steady-

state measurements obtained in glasses [6,34,35]. 
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Figure 9.4 Parallel and perpendicular fluorescence intensity profiles from which the 

anisotropy decay is calculated for avidin: ~ 285 nm, A-em > 335 nm, 20°C. The 

fluorescence anisotropy decay was fit to a single exponential: r(t) = 0.08 exp(-t/1586 ps), % 

= 1.56. The fluorescence lifetime of avidin was fit to the function: K(t) = 0.41 exp(-t/272 ps) 

+ 0.59 exp(-t/I757 ps), = 1.36. The upper set of residuals corresponds to emission 

polarized parallel to the excitation source; the lower, perpendicular to the excitation source. 
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Figure 9.5. Parallel and perpendicular fluorescence intensity profiles from which the 

anisotropy decay is calculated for the complex of avidin and biotinylated 7-azatryptophan (1 

per binding site), Xgx = 310 nm, A-em > 400 nm. As indicated in the Results section, about 

50% of the emission comprising the anisotropy decay is due to the 7-azatryptophan 

chromophore. The anisotropy decay is well described by two components; r(t) = 0.06 exp(-

t/64 ps) + 0.13; = 1-51. The second component of the anisotropy decay reflects the overall 

tumbling of the protein itself and is too long-lived to be accurately determined on a 3-ns time 

scale, on which it appears to be infinite. The fluorescence lifetime of the biotinylated 7-

azatryptophan in the complex was fit the fimction: K(t) = 0.48 exp(-t/423 ps) + 0.52 exp(-

t/2265 ps), = 1-17. The upper set of residuals corresponds to emission polarized parallel 

to the excitation source; the lower, perpendicular to the excitation source. 



www.manaraa.com

Table 9.1 

Fluorescence Lifetime and Anistropy Decay Parameters^ 

species Tp, (ps) Tpj (ps) A, Tri (ps) 1t2 (ps) ri(0) r9 (0) 

7ATB 646 ±9 2690 ± 970 0.98 ± 0.02 108 ± 2 0.08 ±0.01 — 

avidin 268 ±9 1730 ± 70 0.42 ± 0.03 1300 ±260 0.09 ± 0.01 — 

complex 417 ± 14" 2300 ± 40 0.48 ± 0.01 80 ± 18 0.06 ± 0.02 0.14 ±0.01 

^ Fluorescence decays are fit to the function K(t) = Aj expC-t/Xpi) + A2 expC-t/Tp?). Anisotropy decays are fit to the 
function r(t) = ri(0) exp(-t/tri) + r2(0) exp(-t/Tr2). All measurements were performed at 20°C and with A,ex = 285 nm and 
A,em ^ 335 nm, unless otherwise specified. 
A,ex = 310 nm, > 400 nm. 
The apparent shortening of the lifetime of 7-azatryptophan in the complex may be attributed in part to a weighted average of 
emission from itself and tryptophan. 
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exrp (310 nm) = 100 cm"' M"' and £7^7 (310 nm) = 1100 cm"' M"' [3]. The radiative rates 

used for 7-azatryptophan and for tryptophan are 3.8 x 10^ s"' and 5.0 x 10^ s"', respectively. 

The quantity, C(t), is plotted for 7-azatryptophan in the presence of 4 tryptophan residues and 

for l-methyI-7-azaindole in the presence of 4 tryptophan residues for different excitation 

wavelengths and on different time scales to demonstrate the selectivity of the 7-azatryptophan 

chromophore as an optical probe (Figure 9.6). l-Methyl-7-azaindole is presented to illustrate 

the enormous optical selectivity that persists at longer times as a result of blocking the 

nonradiative processes afforded by the interactions of the N] proton with the solvent [5,12] 

(see Conclusions). 

Detection of emission wavelengths longer than 400 nm was chosen to accelerate the 

data collection time and to ensure discrimination against emission from tryptophan itself. In 

principle, the "homogeneity" of the signal can be improved by selecting a combination of a 

lower energy emission wavelength cutoff and a lower energy excitation wavelength, as is 

demonstrated elsewhere and in Figure 9.6. 

Our data reveal an interesting complication in the photophysics of the complex of 

avidin and biotinylated 7-azatryptophan. Namely, despite the high 7-azatryptophan to 

tryptophan ratio in the complex, the contribution of 7-azatryptophan emission detected is 

essentially constant (50-60%) regardless of whether the excitation wavelength is 285, 290, or 

310 nm. The explanation of this phenomenon is revealed by Figure 9.1b, which compares 

the fluorescence excitation spectra of biotinylated 7-azatryptophan free and complexed with 

avidin. Complexation induces a blue-shift and a slight change in shape of the absorption 

spectrum that renders preferential optical excitation of 7-azatryptophan less efficient. 
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Figure 9.6. Percentage of emission observed from 7-azatryptophan and related compounds as 

a function of time for various experimental conditions as determined from eq 3. 

(a) 7-azatryptophan/4 tryptophans, Xgx = 310 nm, ?k,em ^ 400, 20-ns full scale. The 

inset depicts the difference in emission (on a 3-ns scale) observed from 7-azatryptophan 

when the excitation wavelength is changed from 310 nm to 285 nm. 

(b) l-Methyl-7-azaindole/4 tryptophans, Xgx = 310 nm, A-em ^ 400, 20-ns fiill scale. 

The inset depicts the difference in emission observed from 7-azaindole when the excitation 

wavelength is changed firom 310 nm to 285 nm. The rise in percentage emission is a result of 

the 21-ns fluorescence lifetime of l-methyl-7-azaindole as compared to the ~ 2.6-ns average 

fluorescence lifetime of tryptophan (eq 3). 
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Despite the shift of the absorption spectrum induced upon complexation, there is 

significant spectral overlap between the absorption spectrum of biotinylated 7-azatryptophan 

and the emission spectrum of tryptophan. The possibility of thus exploiting tryptophan to 7-

azatryptophan energy transfer as a an additional tool is confirmed by Figures 9.7 and 9.8. 

Figure 9.7e demonstrates that the fluorescence quantum yield of 7-azatryptophan increases 

when the excitation wavelength is scanned through the region corresponding to tryptophyl 

absorption. Figures 9.lard indicate no such variation of fluorescence quantum yield and are 

presented as control experiments. Figure 9.8 presents time-resolved data that verify the 

presence of energy transfer: at 330 nm where the emission of tryptophan is predominant, the 

average lifetime is significantly shorter than that of uncomplexed avidin; at emission 

wavelengths greater than 505 nm where the emission of 7-azatryptophan is predominant, a 

rise time in the emission is evident and is fit to a time constant of ~ 800 ps. Determination of 

the energy transfer time employed the spectral overlap integral determined from the 

absorption spectrum of biotinylated 7-azatryptophan bound to avidin (Figure 9.1b) and the 

emission spectrum of avidin: 2.84 x 10"'^ cm^/mol. This corresponds to a critical distance, 

RQ, of 12.3 A. Distances between the tryptophan donor and the 7-azatryptophan acceptor 

were estimated as the distance from the midpoint between the 8 and 9 carbons of the indole 

ring of tryptophan and the carbonyl carbon of the biotin alkyl chain [25], Three potential 

donors were investigated: tryptophans 70 and 97 of one monomer and tryptophan 110 of the 

other monomer. These tryptophans yielded the following donor-acceptor distances and 

energy transfer times, respectively: 4.9 A, 6.7 ps; 11.2 A, 960 ps; 29.1 A, 290 ns. (An 

orientation factor of 2/3 was employed.) Our measured energy transfer time is in excellent 

agreement with Trp-97 being the donor. 

Discussion 

The steady-state absorption and fluorescence properties of 7-azatryptophan are 

sufficiently different from those of tryptophan that selective excitation and detection may be 

effected. The absorption maximum of 7-azatryptophan is red shifted by 10 nm with respect 

to that of tryptophan. There is also a significant red shift of about 50 nm of the maximum of 

the fluorescence spectrum of 7-azatryptophan with respect to that of tryptophan. We have 

measured the fluorescence decays of mixtures of tryptophan and 7-azatryptophan. Only when 

the ratio of tryptophan to 7-azatryptophan is as great as 10:1 does the tryptophyl emission 
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Figure 9.7. Relative fluorescence quantum yields, <t»F, as a function of excitation wavelength 

at neutral pH (unless otherwise indicated) for (a) indole, (b) 5-niethoxyindole. (c) 7-

azatryptophan, (d) rhodamine B in ethylene glycol, (e) complex of biotinylated 7-

azatryptophan and avidin. The quantum yields presented here are relative to those obtained 

at the absorption maximum. 
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Figure 9.7 (continued) 
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Figure 9.8. Fluorescence decay of biotinylated 7-a2atryptophan bound to avidin at emission 

wavelengths of 330 ± 8 nm and > 505 nm at 20°C. X-ex = 290 nm. 

(a) A,em = 330 ± 8 run, K(t) = 0.60 exp(-t/78 ps) + 0.34 exp(-t/420 ps) + 0.06 exp(-

t/1830 ps),x2=i.65. 

(b) A-em ^ 505 rmi, K(t) = -0.26 exp(-t/828 ps) + 1.03 exp(-t/822 ps) + 0.23 exp(-

t/6580 ps), = 1.40. 

In both measurements, data were collected only to a maximum of 3800 counts given 

the low fluorescence intensity in the emission wavelength range of interest. 
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become detectable. Furthermore, as opposed to aqueous tryptophan at pH 7, the fluorescence 

decay of 7-azatryptophan is single exponential. This result holds across the emission band 

and over the pH range we have studied, from 4 to 13. The monoexponential fluorescence 

decay in itself indicates the enormous preference for using 7-azatryptophan instead of 

tryptophan as a fluorescent probe. 

Recently, there have been reports suggesting that 5-hydroxytryptophan is a useful 

biological probe as well [28]. While in some cases 5-hydroxytryptophan may prove useful (if 

relatively long excitation wavelengths, ~ 320 nm, are employed), we have demonstrated [10] 

that because its fluorescence spectrum and lifetime are similar to those of tryptophyl 

chromophores, it can be more difficult to distinguish from tryptophan than is 7-

azatryptophan. This is due in large part to the 3.8-ns lifetime of 5-hydroxytryptophan, which 

is similar to that of the long component of tryptophan. In mixtures of 5-hydroxytryptophan 

and the tryptophyl chromophore, NATA (N-acetyl tryptophanamide), in a ratio as high as 

1/10, the presence of 5-hydroxytryptophan cannot be discriminated from the mixture (Jlgx = 

305 nm; A-em > 335 nm). On the other hand, when the ratio of 7-azatryptophan to NATA is 

as low as 1/40, the 7-azatryptophan is easily detected [10]. 

The spectroscopic distinguishability of 7-azatryptophan in the presence of avidin is 

demonstrated clearly in the Figures. As is noted above and in the caption to Figure 9.5, about 

50% of the emission of the complex of biotinylated 7-azatryptophan with avidin is 

attributable to 7-azatryptophan. More importantly, the emission attributable to 7-

azatryptophan decays according to a single exponential even though there are four biotin 

binding sites in avidin. As indicated in the caption to Figure 9.4, however, the fluorescence 

decay of avidin itself requires two exponentials in order to be adequately fit. This is not 

surprising considering that there are 16 tryptophans present and that the fluorescence decay of 

tryptophan is intrinsically nonexponential. 

The fluorescence anisotropy decay of biotinylated 7-azatryptophan in complex with 

avidin is fit well to two exponentially decaying components, the second of which is very long 

lived; r(t) = ri(0)exp(-t/i:i) + r2(0)exp(-t/T2) = 0.06 ± 0.02 exp(-t/80 ± 8 ps) + 0.14 ± 0.01 

(Figure 5). That the fluorescence anisotropy is fit to two exponentials indicates that we are 

probing the rapid librational motion of the 7-azatryptophan probe with respect to avidin as 

well as the overall tumbling motion of the avidin itself. For probes attached to globular 

proteins, the order parameter, S^, is a model independent measure of the extent to which 

restricted motion can occur [29]. = [r(t)/r(0)] exp(t/i:r) = r(0'^)/reff(0). and r(0"^) are 

determined by the fit of the long-time behavior of the anisotropy decay (the overall protein 
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reorientation or tumbling) to a single exponential and are equivalent to X2 and r2(0), 

respectively. reff(0) is the initial value of the anisotropy less those nonmotional factors 

contributing to the anisotropy decay [30]. In the treatment of the data, reff(0) = ri(0) + r2(0). 

S gives an indication of the magnitude of the depolarizing motions that are present in 

addition to the overall protein reorientation. Thus a value of S < 1 implies local motion of 

the chromophore with respect to the body of the protein, and = 1 implies a rigid 

chromophore that undergoes depolarization only by means of overall protein motion. The 

order parameter can be related to a hypothetical cone semiangle, SQ, within which the 

transition dipole moment can diffuse [29,31]; S = 1/2 COSBQ (1 + COSBQ). In this example, % 

= 29 ± 5°. The relatively large value for the cone semiangle indicates that while the biotin 

itself is firmly attached to the avidin, the 7-azatryptophan tag lies either in a mobile part of 

the protein or is partially exposed at the exterior of the protein. The latter of these 

possibilities is more likely given the large contribution of the rapid component of the 

anisotropy decay and the similarity of the fluorescence spectrum of 7-azatryptophan in the 

complex (Figures 9.1 and 9.2) to 7-azatryptophan in water [5,10]. If 7-azatryptophan were 

buried in the protein interior, not only would the rapid component be much less pronounced 

(or absent) but its fluorescence spectrum would be expected to resemble more closely what is 

observed in pure alcohols. In alcohols, a second maximum is observed at lower energies. 

This second band arises from excited-state tautomerization [2,5,8,9,32], which does not occur 

to any significant extent either in pure water [5,8,9,33] or in the complex studied here. The 

conclusion concerning the degree of freedom afforded to the 7-azatryptophan moiety is also 

confirmed by the X-ray structure of the avidin-biotin complex [25], which indicates that 

carboxylate groups of the valeryl side chain of biotin (used to form the linkage with 7-

azatryptophan), lie at the surface of the protein. 

Conclusions 

1, Fluorescence anisotropy measurements of the complex of biotinylated 7-

azatryptophan with avidin suggests the utility of 7-azatryptophan as probe of small molecule-

protein interactions owing to its spectroscopic distinguishability with respect to tryptophan 

and to its intrinsic single-exponential fluorescence decay, 

2. The spectroscopic distinguishability of 7-azatryptophan in the complex of 

biotinylated 7-azatryptophan and avidin is less than that expected from a comparison of the 
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the individual optical properties of 7-azatryptophan and tryptophan (50-60% as opposed to 

85% at time zero, Figure 9.6). This result provides an example of the sensitivity of the 7-

azaindole chromophore to its environment and indicates that not all such interactions may be 

favorable to its role as a probe molecule. As we have discussed elsewhere, much of the 

sensitivity of the fluorescence of 7-azaindole to its environment is a consequence of the 

proton bound to the 1-nitrogen, which can interact with the solvent and promote either 

internal conversion to the ground state or states of solvation that favor excited-state 

tautomerization [4,5,8,9,12]. In certain circumstances, it may be more convenient to use a 

chromophore where this interaction with the solvent is prohibited [12]. An excellent 

candidate is afforded by l-methyl-7-azaindole, which has a fluorescence lifetime and 

quantum yield in water of 21 ns and 0.55, respectively [5,32]. The long fluorescence lifetime 

of l-methyl-7-azaindole provides the additional advantage of permitting the measurement of 

rotational diffusion times on a time scale of tens of nanoseconds. The spectroscopic 

distinguishability of this chromophore is clearly demonstrated in Figure 9.6. 

3. The occurrence of energy transfer from tryptophan to 7-azatryptophan is 

demonstrated and suggests another role for 7-azatryptophan as a probe of structure and 

environment. 

4. Biotinylated 7-azatryptophan binds tightly to avidin (as demonstrated by 

chromatography). The 7-azatryptophan moiety can be modelled as diffusing in a cone with a 

half angle of 29 ± 5°. 

5. The four avidin binding sites provide equivalent environments as indicated by 

the fluorescence lifetime and anistropy decay of the bound biotinylated 7-azatryptophan. 
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CHAPTER 10. SYNTHESIS AND SPECTRAL CHARACTERIZATION OF 5'-

PHOSPHOPYRIDOXAL-D,L-7-AZATRYPTOPHAN, A PHOTOPHYSICAL 

PROBE OF PROTEIN STRUCTURE AND DYNAMICS 

A paper published in Biochemical and Biophysical Research Communications^ 

A. V. Smirnov^, R. L. Rich^-^^ j. w. Petrich^'S 

Abstract 

We report the first isolation of an unique adduct of pyridoxal 5'-phosphate, 5'-

phosphopyridoxyl-D,L-7-azatryptophan, and suggest a new and easier route for synthesis and 

purification of 5'-phosphopyridoxyl-L-(or -D-)tryptophan. The absorbance and emission 

spectra of the 7-azatryptophan adduct are distinctly different than those of pyridoxal 5'-

phosphate or the tryptophan adduct. We propose that 5'-phosphopyridoxyl-D,L-7-azatryp-

tophan has great potential as an intrinsic probe in optical studies of protein dynamics. 

Introduction 

We have previously proposed 7-azatryptophan (Figure 10.1) as an alternative to 

tryptophan as an optical probe of protein structure and dynamics. The absorption and 

emission spectra of 7-azatryptophan are sufficiently different from those of tryptophan that it 

' Reprinted with permission from Biochemical and Biophysical Research Communications 
1994,198, 1007. Copyright © 1994 Academic Press. 

2 Undergraduate summer student from the Higher Chemical College of the Russian Academy 
of Sciences who worked under the direction of J. W. Petrich. Currently a graduate student 
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Smirnov. This paper is included in this dissertation for completeness in describing the 
cofactor projects currently underway in our laboratory. 
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Figure 10.1. Structures of; (a) 7-azatryptophan; (b) tryptophan; (c) pyridoxal 

5'-phosphate; and (d) 5'-phosphopyridoxyl-D,L-7-azatryptophan. 
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is possible to observe selectively and uniquely emission from 7-azatryptophan in the presence 

of at least ten tryptophans [1-5], Furthermore, whereas the intrinsic fluorescence decay of 

aqueous tryptophan is nonexponential, that of 7-azatryptophan is single exponential [1-5]. In 

addition, we have successfully replaced tryptophan with 7-azatryptophan in bacterial 

enzymes [1,6], incorporated 7-azatryptophan into synthetic peptides, and have shown that the 

binding characteristics of a 7-azatryptophan-containing peptide resemble those of the native 

tryptophan-containing sequence [3]. Tethering 7-azatryptophan to a coenzyme that binds in 

the enzymatic active site would ensure that examination of the protein dynamics indeed 

would be of the active site. We chose to synthesize 5'-phosphopyridoxyl-D,L-7-

azatryptophan, an adduct of pyridoxal 5'-phosphate, a vitamin Bg derivative that is a required 

cofactor for a number of enzymes. Such a modified coenzyme would permit one to observe 

fluorescence emission preferentially from the adduct, up to a limit of ten tryptophans within 

the enzyme per coenzyme adduct molecule [3]. 

Experimental 

Materials and Methods 

Pyridoxal 5'-phosphate, D- and L-tryptophan, and D,L-7-azatryptophan were 

purchased from Sigma Chemical Co. Acetic acid, potassium hydroxide, hydrochloric acid, 

and sodium borohydride were reagent-grade chemicals from Fisher Chemical Co. Dowex-1 

and Amberlite IRA-743 resins were products of Dow Co. and Rohm & Haas Co., 

respectively. All reagents and resins were used as purchased. 

UV-visible spectra were obtained at room temperature using a Hewlett-Packard HP 

8452A diode-array spectrophotometer, 'H NMR spectra were recorded on a Nicolet NT300 

spectrometer. Column preparation/regeneration of the Dowex-1 resin required flushing 

thoroughly with 4 M CH3COOH (approximately 50 mL), then washing the column with 

water until the effluent was at neutral pH. The preparation/regeneration of the Amberlite 

IRA-743 column required flushing with 50 mL of 2 M H2SO4, followed by washing with 

water until the effluent was at neutral pH, and then flushing with 30 mL of 2 M NH4OH [10]. 
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Preparation of 5'-Phosphopyridoxyl-D,L-7-Azatryptophan 

The synthetic methods described in this paper are based on a combination of 

techniques published previously [7-9]. All operations were performed at room temperature 

and under yellow light to prevent photolysis. The solutions were stirred throughout the 

synthetic procedure. 

0.5 mmol each of pyridoxal 5'-phosphate and D,L-7-azatryptophan were dissolved in 

five mL water, forming a light yellow solution. After 30 minutes, the pH was adjusted 

slowly to 8 using 5 M KOH and the solution gradually became clear and light brown. At this 

time 1.5 mmol NaBH4 was added slowly while pH 8 was maintained by occasional addition 

of dilute HCl and the solution became light yellow. The pH was lowered to 2 using 6 N HCl 

and the reaction mixture became colorless. 

In order to remove boric acid produced in the synthesis, the solution was layered on a 

column of Amberlite IRA-743 (1x 15 cm) and eluted with 30 mL 0.1 M HCl, followed by 30 

ml of 0.5 M HCl. Collected fractions showing an absorption maximum at 328-330 nm were 

combined, evaporated in vacuo to approximately one mL, and neutralized. A viscous yellow 

liquid was obtained. The compound was further purified by layering on a column of Dowex-

1 (1 X 40 cm) previously equilibrated with water. A linear gradient of 0 to 0.7 M CH3COOH 

was then applied to the column. A total of 400 mL of eluent was used. The residual 

pyridoxal 5'-phosphate and 7-azatryptophan eluted at the beginning of the gradient, while the 

product eluted at 0.5 M CH3COOH. Once again, fractions showing an absorption maximum 

of 328-330 nm were combined, evaporated in vacuo to approximately one mL, neutralized, 

and evaporated until dry. Light yellow crystals were obtained. These were dried overnight in 

a drying box with NaOH to remove all traces of CH3COOH. 

UV-vis (rel. int.); 260 (0.64), 292 (1.00), 330 nm (0.75). 'H NMR (D20/Na0D): 6 

2.42 (s, ArCHs), 3.28 (m, -CHAHB-CEX-), 3.71 (t, -CHAHB-C%-), 3.89 (d, -CZ/^/fgAr), 

4.06 (d, -CHAHBAT), 4.97 (m, ArC//^^5-NH-), 7.36 (m, ArH), 7.58 (s, ArH), 7.69 (s, ArH), 

8.21 (m, ArH), 8.45 (m, ArH)-

Preparation of S'-Phosphopyridoxyl-L-Tryptophan and 5'-PhospliopyridoxyI-D-

Tryptophan 

Since tryptophan is not stable under extreme acidic conditions and the 5'-

phosphopyridoxyl-tryptophan compounds are not as soluble in water as 5'-phosphopyridoxyl-

D,L-7-azatryptophan, a slightly different route was employed for these syntheses. A total of 

0.5 mmol each of pyridoxal 5'-phosphate and L-tryptophan were dissolved in 5 ml of water. 
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forming a deep orange solution. The pH was adjusted to 8 with 3-4 drops of 50% KOH and 

the reaction mixture became light green-yellow. After 15 min, 2 mmol of NaBH4 were added 

slowly while pH 8 was maintained by occasional addition of dilute HCl. After another 5 

minutes, the pH was slowly lowered to 3-4 with 6 N HCl and the reaction mixture was 

allowed to sit for about 2 hours while light yellow needle-like crystals formed. The product 

was filtered and washed with a small amount of water followed by MeOH and dried in a 

drying box with CaS04 overnight. The product was purified by dissolving it in water with a 

minimum of KOH and then adding HCl solution dropwise until the pH was 3-4. 

Synthesis of the D-tryptophan adduct followed the same procedure as that of the L-

tryptophan adduct described above. The absorption and emission spectra of the two 

enantiomeric compounds show the same maxima. 

UV-vis (rel. int.); 260 (1.00), 280 (0.82), 288 (0.76), 332 nm (0.93). ^H NMR 

(D20/Na0D): 8 2.42 (s, ArCHs), 3.23 (m, -CHaHb-CHx-1 3.69 (t, -CHAHB-C//X-), 3.81 (d, 

-CHAHBAT), 3.99 (d, -CHAHBAV), 4.94 (m, ArCH^/fs-NH-), 7.31 (m, AvH), 7.39 (s, ArH), 

7.43 (m, AxH), 7.69 (d, ArH), 7.72 (s, AvH), 8.21 (d, ArH). 

Results and Discussion 

Most of the reported derivatives of pyridoxyl 5'-phosphate with natural amino acids 

were obtained in 1966 by Ikawa [7]. Further work [8-10] revealed improved methods for the 

synthesis of the L-tryptophan derivative. None of these methods, however, offers a 

convenient synthesis and purification technique. Ikawa [7] uses platinic oxide in the initial 

synthetic steps and other methods [8,9] involve maintaining the reaction product at low pH 

values known to be destructive for the tryptophan moiety [11]. In addition, when 

chromatography on a column of DEAE-Sephadex A-25 [9] was tried for product purification, 

the effluent was too dilute to be unambiguously analyzed by thin-layer chromatography with 

a fluorescent indicator. After concentrating the column effluent, both methods [8,9] produce 

a brownish yellow substance, in contrast to the one described by Ikawa [7] and here (see 

Materials and Methods). 

In order to examine the possible effects of the D- and L-enantiomers, both of the 

tryptophan derivatives were obtained. Any differences in protein-adduct behavior between 

these two species may then be directly attributed to the a-carbon. In the event that no 

differences are observed between the D- and L- species, it is not necessary to isolate the 
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individual enantiomers. The synthesis presented here for the 7-azatryptophan adduct 

produces a racemic mixture. Should evidence of enantiomeric factors be observed, 

separation of the D- and L- species would be required. 

There are no reports of 5'-phosphopyridoxyl-7-azatryptophan synthesis. The synthetic 

procedure to obtain the 7-azatryptophan adduct is less straightforward than that of the 

tryptophan analog. Most importantly, the reaction mixture should be maintained at a lower 

pH and for longer period of time to achieve equilibrium. Also, the relatively high solubility 

of 5'-phosphopyridoxyl-D,L-7-azatryptophan in water does not permit the use of 

recrystallization as a convenient purification procedure. Fortunately, the greater stability of 

7-azatryptophan than tryptophan in acidic solution allows for purification via column 

chromatography. 

Figures 10.2-10.4 illustrate the significant differences in the absorption and emission 

spectra of the two adducts and pyridoxal 5'-phosphate. The contributions from tryptophan 

and 7-azatryptophan are easily observed in the absorption spectra, producing maxima (280 

and 292 nm, respectively) not present in the pyridoxal 5'-phosphate spectrum. The emission 

spectra yield maxima in the expected ranges for derivatives of these amino acids. Clearly, 

preferential excitation and emission collection of 5'-phosphopyridoxyl-D,L-7-azatryptophan 

may be performed in the holoenzyme complex. 

Conclusions 

5'-Phosphopyridoxyl-D,L-7-azatryptophan offers a unique opportunity to study 

protein dynamics without significantly altering the enzyme structure while employing an 

intrinsic probe. Previous work has shown the 5'-phosphopyridoxyl-L-tryptophan adduct to 

bind successfully to tryptophanase [8] and tryptophan synthase [9]. The 7-azatryptophan 

adduct is expected to bind similarly based on earlier comparisons of tryptophan and 7-

azatryptophan binding in an enzymatic active site [3]. This probe presents a novel approach 

to study steady-state and time-resolved spectroscopy of enzymatic systems requiring 

pyridoxal 5'-phosphate as a cofactor. 
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Figure 10.2. Absorption and emission spectra (A-ex - 320 nm) of pyridoxal 5'-

phosphate. 
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Figure 10.3. Absorption spectra of; (a) 5'-phosphopyridoxyI-L-tryptophan 

and (b) 5'-phosphopyridoxyl-D,L-7-azatryptophan. 
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Figure 10.4. Emission spectra of: (a) 5'-phosphopyridoxyl-L-tryptophan (X 

eminax = 354 nm; Xgx = 281 nm) and (b) 5'-phosphopyridoxyl-D,L-7-

azatryptophan (A.gm'"®'' = 394 nm; X^x = 292 nm). 
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PART IV. ANALYSIS OF PROTEINS 
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CHAPTER 11. PROPOSED INCORPORATION OF 7-AZATRYPTOPHAN INTO 

BACTERIAL PROTEINS 

Introduction 

Incorporation of intrinsic probes into proteins is the ultimate goal of this research 

project. A nonnatural amino acid such as 7-azatryptophan or one of its analogs as a 

replacement for a particular residue in the protein's peptide sequence allows for highly 

selective yet relatively non-disruptive study of the protein alone or in complex with cofactors, 

peptides, another protein, or other biological entities. This replacement approach has 

numerous advantages, particularly when employing 7-azatryptophan and its analogs. As 

discussed in previous chapters, 7-azatryptophan is spectroscopically distinct from tryptophan 

and can be detected in an environment containing multiple tryptophans. The following is a 

description of the 7-azatryptophan incorporation into proteins project underway in our [1] 

laboratory; included are a list of clone donations provided to our laboratory for this project 

and the procedures and techniques required. 

Materials and Methods 

Donations 

Below are listed the clones donated to our laboratory and a short description of each. 

Actual correspondence from the donors can be found in my notebooks. 

1. pUCW248F tryptophanase containing one tryptophan (JM109) from Yasushi 

Kawata, Department of Biotechnology, Tottori University, Japan, 1/26/1993. We have been 

given a W248F mutant cell of tryptophanase (JM109/pUCWF) that overproduces the enzyme 

under IPTG inducing conditions. This mutant ontains only one tryptophan, W330. The 

optimal conditions for cell growth known by Dr. Wen-Chy, a postdoctoral fellow in Dr. 

Metzler's lab. Department of Biochemsitry and Biophysics, Iowa State University. Previous 

work with this enzyme includes incorporating 5-fluorotryptophan at positions 330 or 248 and 

/330. SVS370 tryptophanase (wild-type that contains two tryptophans) was also provided by 

Dr. Wen-Chy. 



www.manaraa.com

203 

2. Y147W LDH (42 kDa) from J. J. Holbrook, Department of Biochemistry, 

University of Bristol, U.K.. The actual correspondence was from D. J. Halsall, a postdoctoral 

fellow in Dr. Holbrook's lab, 3/2/1993: "The crystal structure of the Y147W mutant has been 

solved and is essentially identical to that of the wild type [2] The plasmid is pkk derived and 

transformed into E. coli TG2 cells and transformants are selected for by growth on 

ampicillin. The LDH expresses routinely at at least 20% of the total cell protein. Purification 

is relatively simple; the group used a heat step (70°C for 20 minutes, a blue sepharose or 

oxamate affinity step, then ion-exchange on Q-sepharose)." 

3. pTZW31-3 DHFR (18.5 kDa) from Benkovic, pUCW289F, pJGR luciferase (62 

kDa): I have no information about these donations. 

Production and Isolation of Tryptophanase 

The procedures for growth of competent cells and transformation of plasmids 

described below are general techniques; the procedure for isolation of tryptophanase from the 

cell milieu and determination of enzymatic activity is that of Behbahani-Nejad et al. [3] and 

Metzler et al. [4], with slight modifications noted. 

We have obtained a mutant cell (JM109/pUCWF) that has only one tryptophan (at 

residue 330) from Y. Kawata and overproduces tryptophanase upon induction with IPTG. I 

transformed the DNA from this mutant into a tryptophan auxotrop E. coli K-12 strain, ATCC 

23802. I call this 2W1. 

Single colonies of 2W1 cells are grown on 2yT agar plates having an ampicillin 

pressure of 50 jiig/mL, then harvested into 1 L of culture media. If incorporation of 7-

azatryptophan was intended, the media used was M56' media (M56' is M56 [5], but using 

glycerol as the carbon source); if not, cultures were grown in 2yT media. Cultures were 

grown for approximately 40 hours at 37°C with gentle agitation. The broth was then 

centrifuged and the supernatant discarded. The pellet was resuspended in M56' media in 

which the tryptophan had been replaced with D,L-7-azatryptophan. IPTG was added 45 

minutes later to inititate tryptophanase production and this culture was gently agitated at 37° 

C for approximately 15 hours longer. At this time, the broth was centrifuged and the pellet 

was frozen at -20°C overnight. 

Growth of Competent E. coli Cells. Grow one mL 2yT culture overnight, then 

inoculate 200 [iL this broth into 50 mL 2yT media. Grow this culture until it reaches the 

mid-log phase. Put the culture on ice for 30 minutes, then centrifuge for 30 minutes. 

Centrifuge for 10 minutes at 4°C and resuspend in the cells in 20 mL cold trisCa (10 mM tris 
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HCl pH 8.0, 50 mM CaCl2). Keep the cells on ice for 30 minutes, then centrifuge the 

suspension for 10 minutes. Resuspend the cells in 2 mL of cold tris Ca. 

Transformation of Plasmids. Add five (iL DNA to 200 |lL of cells and put on ice 

for 30 minutes. Heat shock at 42°C for two minutes, then add one mL 2yT culture broth. 

Incubate at 37°C with gentle agitation for one hour and then plate out 50 |lL, 100 nL, and 200 

|xL culture on (2yT + amp) plates. Collect cells containing plasmid by; selecting a single 

colony from culture grown on (2yT + amp) plate, inoculating one mL (2yT + amp) media, 

and allowing this to grow overnight at 37°C with gentle agitation, and harvest when at mid-

log phase. Centrifuge and discard the supernatant (use approximately 1.5 mL culture). 

Resuspend the pellet in 150 |lL solution I (50 mM glucose, 10 mM EDTA, 25 mM trisCI pH 

8.0). Add 350 |XL soln n (10% SDS, 0.4 M NaOH). Mix gently and put on ice for 15 

minutes. After a precipitate forms add 250 jlL solution III. Put on ice for 15 minutes, then 

centrifuge at 4°C for five minutes. Transfer 700 |iL supernatant to a new vial without 

transferring the scum from the top. Add 700 |LIL isopropanol, centrifuge five minutes, and 

decant the supernatant. Wash the pellet with one mL 70% ethanol and remove all the ethanol 

before drying. Dry in a Speedvac for 15 minutes and resuspend in 50 |J,L TE80. Store at -20° 

C until use. 

Purification of Enzyme. A number of different buffer systems are used throughout 

the isolation of tryptophanase. A recipe for each is given below, followed by step-by-step 

instructions for the enzyme purification. 

buffer 1: 17.42 g K2HPO4 in 1 L water (0.1 M), pH 7.0 adjusted with dilute H3PO4, 0.05 g 

PLP (0.1 mM), 0.585 g EDTA (2 mM), 0.391 g P-mercaptoethano! (5 mM). 

buffer 2: 17.42 g K2HPO4 in 1 L water (0.1 M), pH 7.8 with dilute H3PO4, 0.05 g PLP (0.2 

mM), 0.585 g EDTA (2 mM), 0.391 g P-mercaptoethanol (5 mM), 110 g (NH4)2S04 

(II g/100 mL). 

buffer 3; 17.42 g K2HPO4 in 1 L water (0.1 M), pH 7.8 with dilute H3PO4, 0.025 g PLP (0.1 

mM), 0.585 g EDTA (2 mM), 0.391 g P-mercaptbethanol (5 mM). 

buffer 4: 17.42 g K2HPO4 in 1 L water (O.IM), pH 7.8 with dilute H3PO4, 0.005 g PLP 

(0.02 mM). 

buffer 5: 4.35 g K2HPO4 in 900 mL water (0.025 M), pH 7.0 with dilute H3PO4, 100 mL 

glycerol (10%), 0.025 g PLP (0.1 mM), 0.585 g EDTA (2 mM), 0.391 g p-

mercaptoethanol (5 mM). 
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buffer 6: 34.84 g K2HPO4 in 900 mL water (0.2 M), pH 7.8 with dilute H3PO4, 0.2 M 

NH4CI (2.14 g), 0.585 g EDTA (2 mM), 1.56 g p-mercaptoethanol, (20mM), 100 mL 

glycerol (10%). 

12.7 g cells are suspended in 50 mL 50 mM tris-HCl pH 7.5, 5 mM EDTA buffer. 0.15 g 

lysozyme is added and the solution is put on ice for two hours. 3.5 mL 5 M NH4CI is added 

and the solution mixed by inversion. 3.76 mL 10% Nonidet P-40 is added and the solution is 

again mixed. The solution is sonicated at 80% full power until most viscosity is lost 

(solution can drip from a pipette) and then diluted to 165 mL with buffer solution to make a 

final concentration of 0.1 M K2HPO4, 0.1 M pyridoxal 5'-phosphate (PLP), 2mM EDTA, 5 

mM p-mercaptoethanol, adjusted to pH 7.0 with dilute H3PO4 (buffer 1). The burst cells are 

centrifuged at 3800 rpm for 25 minutes. The supernatant is collected and adjusted to pH 6.0 

with 10% CH3COOH. 30 mL of 2% protamine sulfate solution is added dropwise with 

stirring over 20 minutes and the mixture is centrifuged for 30 minutes. The pH of the 

supernatant is then adjusted to 7.0 with 10% NH4OH. 44.6 g (NH4)2S04 is added over 30 

minutes while stirring the solution at4°C and maintaining pH 7.0 by periodically adding 10% 

NH4OH. The solution is then centrifuged for 30 minutes and the precipitate is discarded. 

28.1 g (NH4)2S04 is added over 30 minutes while stirring at 4°C and maintaining pH 7.0. 

The precipitate was dissolved in 17.5 mL buffer 2. The solution is heated to 65°C and this 

temperature is maintained for 5 minutes. The solution is centrifuged for 30 minutes and the 

supernatant is dialyzed against 3 x 2 L buffer 3. The solution is concentrated to 10 mL by 

ultrafiltration, loaded onto a Sephacryl HR-200 column, and eluted with buffer 4. Fractions 

showing tryptophanase activity are pooled and dialyzed against 3 x 2 L buffer 5. After 

concentration by ultrafiltration, the sample is loaded onto a DEAE cellulose column, washed 

with 2 x bed volume of buffer 5, and eluted with 0.025 M K2HPO4 and a gradient of 0.5 

NH4CI. Fractions showing tryptophanase activity are pooled and dialyzed against buffer 6. 

The sample is stored at 4°C in the dark. SDS-PAGE gel analysis shows one band at 52 kDa. 

Enzyme activity is determined at each step as described by Behbahani-Nejad [3] using S-o-

nitrophenyl-L-cysteine (SOPC) provided by Professor Metzler, Department of Biochemistry 

and Biophysics, Iowa State University The two solutions required for the activity 

measurements are; (1) SOPC solution, 0.05 M K2HPO4 pH 8.0, 0.05 M KCl, 0.6 mM 

SOPC (m.w. 242 g/mol) and (2) tryptophanase activation buffer, 25 mM EPPS pH 8.0 , ImM 

EDTA, 0.2 M KCl, 0.2 PLP, 50 mM p-mercaptoethanol. The and kj-^t values I obtain for 
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the isolated tryptophanase agree with published results [3,4,6] and the optical spectra 

duplicate those of Metzler et al. [4] and Kawata et al. [7]. 
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GENERAL SUMMARY AND CONCLUSIONS 

This work has demonstrated the viability of 7-azatryptophan and its derivatives as 

optical probes of biological systems. The red-shifted optical spectra and monoexponential 

fluorescence lifetimes (in water at pH 7) of these compounds provide us with a unique 

opportunity to study protein structure and dynamics of proteins, even those that contain 

multiple tryptophans. 

Detailed analysis of the chromophore, 7-azaindoIe, and its methylated derivatives has 

supplied a solid basis for interpreting spectroscopic data for the amino acid, 7-azatryptophan, 

in a variety of biological environments due to this probe's sensitivity since the appearance of 

nonexponentiality and changes in lifetime are due to the local environment. Development of 

a new nonnatural amino acid, Ni-methyl-7-azatryptophan, shows great promise. Its high 

fluorescence quantum yield and long fluorescence lifetime indicate that this molecule may be 

an even better intrinsic probe than 7-azatryptophan. The other 7-azatryptophan derivatives 

we are preparing may have similar advantages and prove useful as optical probes. 

We have demonstrated that incorporation of these amino acids into peptides, 

biological cofactors, and proteins is possible and these systems remain viable. Our work on 

t h e  p e p t i d e / p r o t e i n a s e  a n d  p e p t i d e / M H C  s y s t e m s  h a s  p r o v e d  t h a t  7 - a z a t r y p t o p h a n  a n d  N j -

methyl-7-azatryptophan are suitable as intrinsic probes in these complexes. These tryptophan 

derivatives have demonstrated particular sensitivity to their surrounding environment; 

thereby yielding valuable information about their specific location and the overall complex. 

Studies of the "optically tagged" biological cofactors, (biotinylated-7-azatryptophan and -Np 

methyl-7-azatryptophan, and 5'-phosphopyridoxal-D,L,-7-azatryptophan) are still underway; 

our data collected thusfar illustrate the usefulness of using such modified cofactors; the 

native complex is disturbed minimally, if at all, and the probe is placed directly into a well-

characterized binding site. We continue to improve our techniques of direct incorporation of 

7-azatryptophan into proteins. 

Throughout the work described in this dissertation, we have shown the great 

advantages of 7-azatryptophan and its analogs over tryptophan, (and other chromophores 

currently in use), as tools in the photophysical analyses of proteins and other systems of 

biological interest. 
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APPENDIX A: FUTURE PROJECTS 

The following are a number of projects related to our 7-azatryptophan and Ni-methyl-7-

azatryptophan work that we have either considered, but not begun, or started, but not fully 

developed. 

Rigid Octameric Peptide Studies 

We would like to determine the local environment effects upon the binding and 

photophysics of octapeptides containing 7-azatryptophan. Effects due to peptide secondary 

structure may be examined by using two octapeptides we have had synthesized by the ISU 

Protein Facility; KACPLNCD and KACP(7AT)NCD. Incorporation of "spacers" into the 

disulfide bond of these octameric peptide £ind subsequent determination of the inhibition 

ability of the modified octameric peptide would demonstrate the optimum configuration of 

the peptide for enzymatic binding. 

The selection of appropriate spacer length could be performed as follows. Add a 

mixture of alkylating agents (e.g., ICH2C(=0)NH(CH2)nNHC(=0)CH2l) to a solution of the 

peptide bound to enzyme, such as a-chymotrypsin. If the solution is sufficiently dilute and 

the binding of the alkylating agent is reversible, the alkyl chain of optimal length should bind 

to the peptide. Analysis of the alkylated peptide (after removal of the enzyme by 

denaturation and dialysis) by mass spectrometry should reveal the preferred chain length for 

alkylation. After this initial screen, synthesis using the chosen alkylating agent may be 

performed on a larger scale and under conditions not requiring an enzyme. At this stage, 

inhibition studies and photophysical analyses could be performed using this rigid peptide 

alone and bound to an appropriate enzyme. Notebook reference: ntbkS, p. 194-195. 

Verification of Peptide Cleavage Site 

It is generally assumed that proteinases cleave peptides on the carboxylic acid side of 

amino acids containing large aromatic side chains. The following is a test to verify this 

assumption for the peptide sequences and proteinases that we use. The buffer system to use 

is 0.1 M tris buffer solution (2.422 g tris, 0.588 g CaCl2 2H2O), 1 drop Triton X-100 in 200 

mL water and adjusted to pH 8.3 using 1 M HCl. As an example, the procedure for the 

tripeptide, NAc-pro-trp-asn-NH2, is described. Mix the peptide and proteinase in equimolar 
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ratio (an overwhelming excess of proteinase should guarantee significant peptide cleavage). 

On a silica gel TLC plate, make lanes for; 

1. proteinase 

2. peptide 

3. peptide/proteinase (1:1) at pH of complex under 

normal condition 

4. peptide/proteinase (1; 1) at pH that causes hydrolysis 

to occur 

5. NAc-pro-trp 

6. asn-NH2 

7. buffer alone. 

The TLC solvent system is n-BuOH, acetic acid, water (4; 1:1) and is identification suggested 

to be by Ninhydrin (0.1% Ninhydrin, 5% HAc, 10 pyridine in acetone, made immediatley 

prior to use), an alternative staining agent, and/or uv light. The lane of buffer alone is 

necessary since this buffer will produce spot on the TLC plate (tris is C(MeOH)3NH2) A 

conjugated system is necessary for uv detection and a NH3+ group is necessaiy for Ninhydrin 

analysis. Note, however, that by these methods no spot should be apparent if NAc-pro exists 

in a lane on the TLC plate. By comparison of the lanes after elution, the cleavage site of the 

peptide should be readily apparent. 

5'-Phosphopyridoxal-D,L-7-Azatryptophan Studies 

Pyridoxal 5'-phosphate (PLP), a derivative of vitamin Bg, is a cofactor in a wide 

variety of enzymatic reactions: transaminations, elimination and replacement reactions, 

decarboxylations, deaminations, racemizations, and aldol cleavages [1]. The synthesis of an 

optically-tagged cofactor, 5'-phosphopyridoxal-D,L-7-azatryptophan (7AT-PLP), is discussed 

in Chapter 10.. We have performed some preliminary photophysical analyses of this 

compound and the others reported in Chapter 10. The data for these compounds at X 

ex=285nm, 20°C in water are shown below; 

compound Xem (nm) Ai A9. 1:, (ps) '^7. (ps) XT (ps) 

PLP 345 0.90 0.10 68 521 

7AT-PLP 435 0.54 0.46 157 637 

trp-PLP 4345 0.51 0.41 51 266 1574 
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It should be noted that these data should be remeasured to verify that the short lifetime 

components are valid and not due to instrument instability. 

We propose that the binding of these tagged cofactors with PLP-requiring enzymes, 

e.g. tryptophanase, tryptophan synthase and aspartate aminotransferase, should yield 

information about the role of this cofactor in particular and active site dynamics in general. 

Tschopp and Kirschner [2] have previously reported the synthesis of PLP tagged with 

tryptophan (N-phosphopyridoxal-L-tryptophan) and presented ligand binding parameters for 

their derivative bound to tryptophan synthase: For PLP, Kp = 0.12 mM; for trp-PLP Kj) = 

1.10 mM. These results imply that tagged cofactors are viable, yet show a ten-fold decreases 

in binding ability. We assume the substitution of a nitrogen at the 7-position should make a 

small, if non-negligible, change in the binding of the tagged PLP from that of trp-PLP. 

1. Biochemistry, Stryer, L. 2nd ed. 1975, W. H. Freeman and Company, New York 

2. Tschopp, J.; Kirschner, K. Biochem. 1980,19,4514. 

1M7AT bound to avidin 

Current studies of the biotinylated 1M7AT are underway in our laboratory. This 

cofactor was synthesized by J. Lane at using similar techniques and procedures as described 

for the synthesis of biotinylated 7-azatryptophan. With this tagged biotin, we hope to verify 

the assumptions we proposed in the preceeding paper; that is, that such a probe as a 7-

azatryptophan derivative methylated at the aromatic Nj position is indeed a most viable tool 

in the study of protein structure and dynamics. 
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APPENDIX B: NOTES ON INSTRUMENTATION 

The following is a collection of notes concerning two instruments in our laboratory: the Spex 

Fluoromax and the Perkin-Elmer Lambda 18 UV/vis spectrometer. These notes include 

techniques required for daily use and procedures that I have performed in unusual 

circumstances. Manuals for these instruments may be found in the bench drawers beneath 

each instrument. 

Spex Fluoromax 

Start Up 

The start-up sequence for the Fluoromax is important. Turn the lamp power on and 

wait for the red light next to the Lamp On toggle switch to remain lit. Turn on the computer 

and monitor. Wait for the computer to boot up and select the option "Fluoromax". When the 

company logo appears on the screen and a message appears at the bottom prompting you to 

turn on the Fluoromax power, do so. This message will flash periodically until the the Power 

On toggle switch is tripped. If you turn the power on at the correct time, the message will 

change to "downloading" and the system will initialize. If the prompt message continues to 

appear after you have tripped the Power On toggle switch, you must reboot the computer and 

begin again. The system requires a few minutes to initialize and is finished when graph axes 

appear on the screen. The system is now ready for calibration. 

Daily Calibration 

The excitation and emission calibrations that are reuired unpon initializing the 

instrument are fully described in the manual. When calibrating the excitation spectrum, the 

maximum should be 467.125 nm. If it is not, repeat this calibration until the maximum is 

correct. When calibrating the emission spectrum, the maximum should be 397 nm, with and 

intensity of 1-2 x 10^ ops. If the maximum is off by less than 10 nm, repeat this calibration 

until it is correct. This is the calibration that is more often performed incorrectly. If you 

should have problems, verify that the excitation is set at 350 nm and run an emission scan 

from 300 to 500 nm to observe the excitation and Raman peaks. The excitation peak should 

appear centered at 350 nm (> 1 x 10^ cps) and the maximum of the Raman peak should be at 
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397 nm (1-2 X 10^ cps). If the fluorimeter needs to be drastically recalibrated (the Raman 

peak is > ± 10 nm from 397 nm), the calibration must be performed in crements of 10 nm. 

Move the Raman peak 10 nm in the direction desired, run the calibration, and observe the 

peak shift 10 nm. Repeat this step until the calibration is correct. 

Generation of XC.SPT and MC.SPT files 

The generation of excitation (xc.spt) and emission (mc.spt) files is described in the 

manual. These should be performed regularly, particularly when careful examinations of 

intensities at various wavelegths are required. 

Comparative Calibration of UV/vis Spectrophotometer and Fluorimeter 

The comparative calibration of a UV/vis spectrophotometer and the fluorimeter has 

been described previously in this work, but is included here for reference. Such a comparison 

is necessary when evaluating any differences between the absorption and excitation spectra 

obtained for a sample. Calibration of the absorption spectrometer and of the fluorimeter is 

performed using indole vapor as a standard. Crystals of indole in a 1-cm cuvette filled with 

argonare heated to 65°C. Absorption and excitation spectra are obtained and overlaid. In our 

experiments, comparison of the absorption and the excitation spectra of the vapor indicated 

that the position of the sharp ^Lb transition varied by 1 nm and were accounted for in our 

calculations. 

Lamp Replacement 

The lamp should be replaced when the spectra begin to appear "shaky" (the excitation spectra 

are particularly sensitive to lamp degradation). For example, the excitation calibration scan 

will show unusual oscillations when the lamp needs to be replaced. A 150 W Xenon lamp is 

required and we have purchased such lamps (#XBO-150W/CROFR (69237)) from Adventure 

Lighting, 750 E. Elm St., Des Moines, lA 50309 for $350.00 

Contact People at Spex 

I have worked with a number of representatives from Spex when I required advice or 

parts. These contacts include: Pete Kepper (at Chicago) at 708-620-4520, FAX 708-620-

4551; Doug Keenan and Scott McDowell (in N. J.) at 908-549-7144 ext. 104 and Rich 
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Ruzzerri (in N. J.) at ext. 228; Karen Rubalowski, Jim Matthias, and Dot Mitch (in N. J.) at 

908-549-2571. 

UV/vis Lamba 18 Spectrophotometer 

General information 

To date, we have performed typical wavelength scans that are simply described in the 

manual. Our sales representative, Chris Getz, may be contacted at 1-800-762-4000 and 

technical service representatives may be contacted at 1-800-762-8288. The serial number 

must be provided when one asks for assistance; our serial number is 75033. 

Lamp Replacement 

On the lamp housing is a gauge that measures total lamp hours, when a new lamp is 

required, it may be purchased from Perkin-Elmer. It is easily replaced since the lamp 

(already fixed in its housing) slides, then snaps, into place. 
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APPENDIX C. CALCULATIONS TO DETERMINE 90% INHIBITOR BOUND TO 

ENZYME. 

The original reference for this calculation may be found in my notebook 4, p. 91. For an 

enzyme/inhibitor complex, we can assume the following: 

E + 1 —El 
^2 

Ki = k2/ki 

[I] = [Io]-[EI] 

[E] = [Eo]-[EI] 

where E is the free enzyme, I is the free inhibitor, EI is the enzyme/inhibitor complex, EQ is 

the total enzyme, is the total inhibitor, and Kj is the inhibition constant. Under steady-state 

conditions, 

d[EI]/dt = 0 = ki[E][I] - k2[EI] = [E][I] - Ki[EI] 

which can also be written as 

[EI]2 - [EI]([EJ + [y + Ki) + [E][I] = 0 

Solving for the roots of this quadratic equation using 

-b±'<Jb^ -4ac 

2a 

where a =1, b = [Eg] + Po] + and c = [EQIPQ], one can calculate the concentration of Eg 

and Ig required for 90% of the inhibitor to be bound; i.e., the concentrations of Eg and Ig 

required so that I/Ig < 0.10. 
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